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ABSTRACT

The objective of this research work is the inves-

tigation of materials and techniques that can be used in

model studies of structures under blast-type loads. The

materials are selected on the basis of theoretical con-

siderations, and their usefulness is demonstrated by means

of actual model structure tests which are compared to

prototype tests.

The theory of structural models is reviewed and

extended to a very general form, with emphasis on the

basic differences in the approach suitable for analysis

by means of the mathematical model and the physical model

respectively. This extension of the theory proves to be

necessary when the large number of factors affecting a

dynamic model study in the plastic range are to be taken

into account in a systematic manner. A description of

the general properties of a structure is followed by

a dimensional analysis leading to a comparison between

model and prototype. The criteria for compatibility between

model and prototype materials are derived in detail.

Modelling is discussed as a random process, and the theory

is applied to massive structures in particular.

It is shown that plastic deformations during

dynamic response impose severe restrictions on the equation

of state of the model material which is to be compatible

with steel as a prototype material. The properites of phos-

phor bronze and ethyl cellulose and their usefulness as

modelling materials for steel structures under dynamic loads

are discussed. Manufacturing techniques for phosphor bronze

and the loading devices used in the studies are described

in detail. The results of model studies of beams, joints

and portal frames under static loads are compared to results

xix



obtained from tests on full scale structures, and a tech-

nique of testing models under dynamic loads is described

Since model and prototype results generally show

good agreement, it is concluded that the metal phosphor

bronze can be used as a modelling material in small scale

studies of welded steel structures in all cases where the

model and prototype surface loads do not have to be of

equal intensity. This will, for instance, be the case

where the blast loading is mainly of the drag type. The

use of plastics in the modeling of steel structures

presents problems which cannot be overcome without a

reliable error analysis of the model since in this case

the model will be distorted above the proportional limit.

xx



CHAPTER 1

INTRODUCTION

The use of physical models in the study of engineer-

ing problems has become prevalent in the past decade (1,2,31)

Two general classes of problems lend themselves particularly

to a model solution. First, in problems where the number of

variables or the complexity of the situation make the analyt-

ical solution difficult or particularly cumbersome and second,

in areas where the general laws governing the phenomenon

have not yet been sufficiently developed and a general theory

is lacking. The study of the dynamic response of structures

is one area of structural mechanics where the modeling

method of analysis may be used to advantage. It is the aim
of this report to discuss the problems of using structural

models to study the dynamic behavior of structures in

general and to present specific examples in the choice of

modeling materials and the modeling techniques developed

for their use.

1.1 THE STRUCTURAL MODEL

A structural model is a device, which being a

reproduction of the prototype following certain rules, can

be used to find particular unknown quantities about the

prototype. Two large classes of models- emerge from this

definition. One encompasses all those model studies dealing

with elastic problems. In this case both model and prototype

are within the elastic range and the results can be compared

with those obtained analytically if such methods exist. A

second group representing a more recent approach to the use

of models is in closer agreement with present day concepts

of structural analysis and design(3 ). Here, the model Is

Numbers in parenthesis indicate the particular reference

cited as listed at the end of the report.
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a faithful reproduction of the prototype following the laws

of similitude and boundary conditions from which the ultimate

behavior of the prototype can be predicted as well as the

factor of safety which in defined as the ratio of ultimate

load to the working load acting on the structure. Although

the second approach by the nature of its scope places more

restrictions on the model, it is the only one feasible in

certain problems where plastic deformations are tolerated.

Such problems arise in the study of the dynamic response

of structures where energy absorption criteria allow the

use of some plastic deformations in design. Two basic

types of models arise in our study of structural problems.

One is the stress model or a model which fails because of

rupture of the material at local points, and the buckling

model which becomes unstable at certain critical loads and

results in large deflection. Our main concern here is the

stress type of model and we shall attempt to investigate

its behavior.

1,2 A HISTORICAL SURVEY OF MODEL STUDIES

Physical models have been uted to some extent in

structural analysis and design for many years. In general

the principal external forces involved in these studies

have boon static in nature. Further, only the elastic

behavior of the model, hence the prototype, was of interest.

Model studios to verify the analytical results of compli-

cated structural problems are recorded in the literature50,28)

In moat of these cases the importance of the project made

it feasible to make a model study but in all these cases

the model was, used as a check. It was inconceivalbe then

to base the design on the results of a thorough model study.

As teaching aids in indeterminate structural analysis, models

have found their place in the laboratories of many schools(50

These, however, have been predominantly of the first class

or elastic models.

2



More recent model studies especially in the field

of arch dams have been done in Europe 32.33 '38,3*9) Techniques

have been developed and refined to the point where the model

study plays a major role in the design of arch and domed

dams. Besides the extensive work on dams however, model

studies of complicated buildings and earthquake effects as

well as pioneering work in model studies beyond the elastic

limit have also been done (36'. All being said, the European

model studies have set a good precedent and have prompted
many engineers to base their designs on a model study.

In the United States great impetus has been given

to model studies in the postwar years. This revival stems

from two main sources. Architectural taste for more compli-

cated but pleasing structural forms and the intensive efforts

to develop techniques for the design of structures and

structural elements to resist dynamic loads have introduced

some very interesting but difficult problems. The models in

studies dealing with dynamic response have been loaded

to failure in shock tubes, by impulsive loading machines

and in some cases by high explosive detonations ( 8,18,26,42)

In the majority of cases reinforced concrete structures

were modeled by the steel wire-mortar technique. Dynamic

tests on model or prototype steel structures are far less.

Many problems are encountered in such studies but the results

up to the present (1962) seem encouraging and it is antici-

pated that with future research enough data will be collected

to make the modeling technique an indispensible tool at the

disposal of the structural engineer.

1.3 LIMITATIONS OF PRESENT DAY MODEL STUDIES

Although the general theory of structural models

under the most general conditions has been known for a long

time its application to specific cases has been limited.

The reasons are many but among them one stands out as a

limitation which must be overcome before the modeling tech-

nique can be applied with confidence to non-ftnear problems

in structures and to distorted models. This limitation is

3



the lack of a comprehensive method of evaluating errors in

models which may be "distorted". Thus far model studies

are limited to elastic cases and to a few known rheologically

compatible model materials. In many cases the same material

is used in the model (to be on the safe side) and external

means are employed to satisfy similitude thus introducing

errors of a different nature. An error analysis of models

would be a great contribution to model theory and would

open new horizons in the applications of the modeling tech-

nique.

More work is needed to establish criteria on the

scale limits of model studies. It is obvious that the smaller

the model the bigger the chance of increasing the errors in

the results. Thus if there is a correlation between percent-

age error and scale for a particular class of problems the

experimenter would be able to pick a scale which will be

within the tolerance of his overall allowable error.

Another area which needs more study is the need of

a method of making the model and prototype materials com-

patible while satisfying the other similitude requirements.

It is hoped that some light will be thrown upon this prob-

lem in the sections that follow.
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CHAPTER 2

A GENERAL THEORY OF STRUCTURAL MOIELS

The basic aim of the analysis of a structure is

the prediction of its behavior at a time different from

that at which initial conditions are specified. For the

purpose of the investigation, the nature of the structure

may be described either abstractly by means of a mathematical

model or concretely by means of a physical model, frequently

called "the structural model". Each of the two methods

has its own specific advantages. The mathematical method

tends to use a model in which some of the physical events

occurring in the actual structure are either simplified or

neglected. As a result, a speedy analysis is possible with-

out excessive loss in accuracy. The physical model, on.

the other hand, permits the investigator to account accurately

for a large number of physical events and variables even

if they have complex space-time distributions.

This important property of the structural model

can be used to full advantage only if the experiments are

based on a very general theory. Indeed, direct application

of formulations appropriate for use in current methods of

mathematical analysis will unnecessarily limit the scope of

structural model investigations. This reasoning has led

to the unusual formulations encountered in some of the

later sections.

The theory of structural models forms the basis

for the planning, execution and interpretation of laboratory

studies on a physical model which permit the prediction

of the behavior of a prototype structure under static or

dynamic conditions. It establishes the rules according to

which the geometry, material properties, initial conditions

and boundary conditions of the model and of the prototype

have to be related so that the behavior of the one can be

expressed as a function of the behavior of the other. The
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degree of perfection with which these relationships can be

maintained during the actual experiment, and the effect of

any possible deviation on the accuracy of the prediction of

the prototype behavior, are discussed briefly in Section 2.5.

The physical events considered in this theory are

described in Sections 2.1 and 2.3. If an event occurs in

either model or prototype which involves physical laws not

considered in the theory presented here, the model studies

will lead to erroneous results. So, for instance, electro-

magnetic effects are not taken into account since they play

no role in the vast majority of structural problems.

2.1 DESCRIPTION OF THE MODEL AND PROTOTYPE STRUCTURES

Before a one to one correspondence between model

and prototype can be established, the properties of and

external influences on each of them individually must be

specified. The following physical quantities in most cases

fully describe the nature of a structural problem:

2.1.1 Geometric Properties. If time is not considered

to be a basic dimension, a point in a structure is fully

described by its three space coordinates. A general theory

must, however, take the variation of geometry with time

into account, so that time must be regarded as a coordinate

in the same manner as the space coordinates.

If no mass is added to or removed from the struc-

ture during the time interval in which its behavior is to

be studied, its geometry needs to be specified at one time

to only. The geometry at any other time t will then be

uniquely determined by the displacement vector V defined later.

But If, for instance, the erection period of the structure is

to be included in the model study, a complete time history

of the geometry during that interval must be given.

The position of any mass particle of a struc-

ture in space may be described in any one of the many well-

known coordinate systems. It is thus necessary to prove

that the theory loses none of its generality if it is

restricted to a single system of coordinates. Assume,
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for instance, that spherical coordinates are chosen, so that

the position of point P at time t is

P P(v,, 4, t) (2.1.1)

In all other coordinate systems, P would also be fixed by

at least one length and, in some cases, dimensionless ratios

such as angles. Thus no new physical variables will be intro-

duced by a coordinate transformation, and the theory may be

limited to the system of equation (2.1.1).

The extent of the structure is defined by its

enclosing surfaces which can be expressed by equations of

the form

Vi (r,*,y) = 0 (2.1.2)

The number i of these equations varies from one upward and

is equal to the number of surfaces by which the structure

is bounded. As time varies, their number may increase or

decrease and the region of validity of existing V I functions

may change. Thus the limits of any two of the three space

coordinates must be given in terms of the fourth coordinate,

time:
r (t) A r I r k(t)

*j(t) A *i & k(t) (2.1.3)

where i is the same index as in equation (2.1.2). The limits

of the third space coordinate, q, can be calculated from

equation 2.1.2 and the geometry of the entire structure is

now fully described.

2.1.2 Material Properties. A structure will, in the

most general case, consist of several materials, each of which

has its own particular physical properties that may, or may

not, change with time and temperature. For the purpose of

this theory it is, however, more convenient though still

perfectly general to treat the structure as if it consisted

of a single material whose properties change from point to
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point in space as well as with time and temperature. The

intrinsic properties of the material are then given by the

functions:

Specific Mass: g = g(r,*, , t, T)

Specific Heat: c = c(r, ', t, T)

Coefficient of Thermal
Conductivity: x = x(r,O, 0 , t, T)

Coefficient of Linear
Thermal Expansion: h = h(r, *, (, t, T)

(2.1.4)

A material is not fully specified by its intrinsic properties.

Those of the material properties which are dependent on

external influences are interrelated by the equation of

state of the material, which will be presented in Section 2.3.

2.1.3 Initial Conditions. When the geometry of the

structure is specified at time to, the material may already

be subject to initial stresses due to prestressing or other

processes that have taken place before time to. There will

also be an initial temperature distribution so that it is

necessary to specify

Initial Stress: = i(r,e,q, to)

Initial Temperature To = T(r, 0, , to)

(2.1.5)
If the history of a structure is known from the beginning

of its erection period, and all events ( such as shrinkage

of concrete) during and immediately following this period

are taken into account in the analysis, no specific initial

conditions need to be specified. In some cases where the

molecular processes occurring in a prototype (e.g., during

curing) cannot be reproduced correctly in the physical model,

the specification of initial stresses may become mandatory

even if the entire history of the structure is known.

2.1.4 External Influences on a Structure. The influences

acting on a structure from the outside fall into two categories
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the forces and displacements imposed on its boundary surfaces

and the body forces acting as a result of the attraction

between the mass of the structure and the mass of the earth.

At every location on the face of a structure,

the imposed surface force (i.e. force per unit area) is

defined by the vector

p ~re ~,t) (2.1.6)

In the literature, a distinction is sometimes made between

point, line and surface forces. This distinction is arti-

ficial since all forces necessarily have to be applied over

an area. It is not desirable to introduce into a struc-

tural model study without justification all the simplifi-

cations that are convenient for mathematical methods.

At some points on the surface (e.g.st a per-

fectly rigid support) displacements rather than forces

may be applied to the structure. They are specified by

the displacement vector

ii = E(r,eT, t) (2.1.7)

where superscript i distinguishes the externally imposed

displacements from those which are the result of the response

of the structure to other external influences such as

forces. Frequently structures are subjected to a combina-

tion of boundary forces and displacements.

The body forces caused by the earth's attraction

on the structure are described by the vactor

51 = O(r, #, T ) (2.1.8)

where time variations in the earth's field of attraction are

neglected. The nature of these body forces is quite different

from that of the inertia body forces caused by the response

of the structure to dynamic surface loads or support accel-

erations, as will be shown in more detail in Section 2.6.1.
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The structure will also respond to temperature

changes at its surfaces. They are specified by means of

the scalar

Ti = T(r, @, t) (2.1.9)

2.1.5 Description of Structural Behavior. Once a

structure with given geometric and material properties and

given initial conditions is subjected to a set of external

influences, its response has to be registered by measuring

certain physical quantities which are indicative of the

nature of the structure. Three different aspects of the

behavior of a structure are of particular interest to the

engineer:

a) Stress, Strain or Displacement Distribution - The

stress or strain distribution in a concrete structure for

instance, is of importtance in the determination of the

positioning and dimensioning of the steel reinforcement.

The displacement distribution is of importance in flexible

structures where deformations are restricted by building

codes.

Since all the properties of and influences on a

structure are space and time dependent, the stress, strain

or displacement distributions will be known in terms of

the space and time coordinates once the following functional

relationships have been determined:

Displacements: = u(Vi, g, c, x, h, &o, To, P, i, Gi, Ti)

Stresses: • =(Vi, g, c, x, h, a o, To, P, Ii, G% Ti)

Strains: S =S(Vi' g, c, x, h, &o, To, P, jii, Ti)

(2.1.10)
This is the most general form of solution since it is valid

for all space time distributions of the variables in the

brackets. For any specified space time distribution of the

variables, f, & and a are found as functions of r, * ,q and t

by direct substitution.
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Frequently, the analysis is simplified

considerably if the distribution of u, a, and a has to

be found for just one specific space time distribution

of the variables. These investigations are referred to as

case studies, and the results are obtained directly as

i = a(r,.,p , t)

= e (r, e, T, t) (2.1.11)

u, and e are actually related through the equation of

state of the structural material and the definition of

strain:

e dE

dy (2.1.12)

where y is the distance measured in the direction of a and

e. Since the stress-strain relationship is not always unique

and in addition changes with the stress history of the

material as will be shown in Section 2.3, and since dis-

placements have to be obtained from strains by a frequently

difficult integration, it is customary in model studies to

observe them as if they were independent. The possibility

of obtaining a and e separately in a physical model is one
of the main advantages of that method over current mathe-

matical approaches.

b) The Ultimate Load - A knowledge of the stress, strain

or displacement distribution at a load level below that

required for failure in general does not constitute sufficient

information to predict the failure load itself. The deter-

mination of the ultimate load, which is of paramount impor-

tance to the safety of the structure, is thus a problem of

its own. It requires the specification of an exact failure

criterion, which in most cases depends on the purpose of

the structure studied. It may be decided to impose limits on
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i) the absolute displacement of points in the

structure to prevent excessive deflections associated

with excessive strains.

ii) the relative displacement of points in the

structure to prevent rupture.

iii) spacing and width of cracks in reinforced

concrete structures.

It will be shown in section 2.5 that the choice of the

failure criterion has considerable influence on both the

outcome and the reliability of a model investigation.

c) The Buckling Load - Thin structures such as shells

and thin structural elements such as flanges of I-beams

sometimes undergo large deflections without excessive

strains if they are subjected to compressive loads. They

are then said to have buckled. The determination of a

satisfactory general buckling criterion for the mathematical

model is at present still one of the major problems of struc-

tural engineering. The physical model here shows a very

marked superiority. It is possible in most cases to recog-

nize a buckling failure by direct observation. Most shells,

for instance, show a sudden snap-through. If the material

is still in its elastic range when buckling occurs, the

original shape of the structure is regained once the load

is removed.

2.2 THE RELATIONSHIP BETWEEN MODEL AND PROTOTYPE

It is essential to keep in mind at all times that

the information eventually to be obtained from a structural

model study concerns the behavior of the prototype, not that

of the model. Since all the measurements are, however, carried

out on the model, it is necessary to develop laws according

to which the model results can be extrapolated to the

prototype. For the derivation of these laws, assume that

both model and prototype are fully described by the physical

quantities defined in Section 2.1. Model and prototype will
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then be related if the relationship of each of these quan-

tities individually is described by means of a "correlation
function" f. In the literature (3,31) , these corre-

lation functions are frequently defined as constant ratios.

In a more general theory, they may be made functions of the

basic coordinates r, 4p and t. It will then be possible,

for instance, to use distorted models without violating any

of the similitude requirements derived later in this section.

The correlation function concept will also be found useful

in Section 2.5 when structural model analysis is considered

as a random process.

2.2.1 Geometric Properties. The distance r and time

t are the only physical quantities required for the descrip-

tion of the geometric properties. Thus model and prototype

are related if

r m  = fr(, , p, t) rp

t m = f t(y, 0, 9, t) t p (2.2.1)

where the following conventions are observed:

i) Subscript mdenotes model property

ii) Subscript p denotes prototype property

iii) fz denotes correlation function for the

physical quantity z and is evaluated at r, , q and t of

the prototype.

Since angles are dimensionless ratios, it follows that

0 = 0
m p

and

C =? p

2.2.2 Material Properties. Model and prototype are

related as follows:

Specific Mass: 8m = fg(r, , , t)gp

Specific Heat: cm = fc(r,*, , t)cp
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Coefficient of Thermal xm  = fx(r, 4, t)xp
Conductivity:

Coefficient of Thermal hm = fh(t*, IT, t)hp
Expansion:

(2.2.2)

2.2.3 Initial Conditions. Model and prototype are related

if

Initial Stress FOm = f,(r,, to) ip

Initial Temperature Tom = fT(r, *,ip, to)Top

(2.2.3)

2.2.4 External Influences on a Structure. Model and

prototype are related if

Surface Forces: Pm = f p(N, O, P, t)P

Displacements: - = fu(r, 0, ,t

Body Forces: G = fG(r,0, q, t)Gi

Temperature: T = fT(r,, , t)Ti

(2.24)

It should be noted that the correlation functions defined

in Sections 2.2.1 to 2.2.4 are independent of the state of

stress or strain of the materials involved.

2.2.5 Comparison of Structural Behavior. In addition

to the quantities described in Section 2.1.5, the acceleration

t (2.2.5)

which occurs in many applicationswill also be considered.

The required correlation functions thus are

Displacements: f (r,* t)-

Stresses: ' f. ( r , t)m r&
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Coefficient of Thermal xm  = fx(r,e, q,t)xp
Conductivity:

Coefficient of Thermal hm  = f h(' t ,, t) hp
Expansic(n:

(2.2.2)

2.2.3 Initial Conditions. Model and prototype are related

if

Initial Stress &0 m = f.(r,0, 4, to) 0op

Initial Temperature Tom = fT(r, *,i, to)Top

(2.2.3)
2.2.4 External Influences on a Structure. Model and

prototype are related if

Surface Forces: Pm = fp (N, , , t) P

Displacements: -i f(r,

Body Forces: -i= f

Temperature: ti = fT(r,, , t)T i

m T P

(2.2.4)

It should be noted that the correlation functions defined

in Sections 2.2.1 to 2.2.4 are independent of the state of

stress or strain of the materials involved.

2.2.5 Comparison of Structural Behavior. In addition

to the quantities described in Section 2.1.5, the acceleration

17 -(2.2.5)

which occurs in many applicationswill also be considered.

The required correlation functions thus are

Displacements: a = f (r,*,q, t)-

Stresses: f ,
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Accelerations: m = fa (re, ', t) p

(2.2.6)

It follows from equation (2.1.12) that

m = fr Up p (2.2.7)

so that no correlation function for strains needs to be

specified.

2.2.6 Dimensional Analysis. If all the correlation

functions defined in the previous sections were independent,

the prototype behavior could not be predicted from the model

behavior. An analysis of the dimensions of the physical

quantities defining a structure will, however, reveal that

only a few of the correlation functions can be considered

as independent. Thus the correlation functions in equa-
tion (2.2.6) comparing model and prototype behavior can be

expressed in terms of the other correlation functions, and a

prediction of the prototype behavior is possible.

Before the dimensional analysis is carried out,

a special type of model study that does not require this

approach will be discussed for the sake of completeness

of presentation. Suppose that quantity y describing the

structural behavior is known as a function of other quanti-

ties xl, x2 ... , i.e., the physical event controlling y is

known. Say

y + 1 - ... (2.2.8)
x3

Chose x1, x 2 ... in the model and prototype in such a manner

that

XliX 2m = k X lp X2p

X 3m X 3p
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= 4 k _X4 2
xsm xsp etc.

Then equation (2.2.8) can be used to predict the proto-

type behavior y p from the model behavior Ym since

Ym = k yp (2.2.9)

The usefulness of this method, which has been very popular

in the past, is restricted since equation (2.2.8) must first

be found by mathematical investigation. The physical model

is degraded to become an "analog computer" for the mathe-

matical model and in this manner is deprived of its main

advantage of generality.

Full generality is maintained if the model to

prototype relationship is based on an analysis of the

dimensions of the physical quantities describing the struc-

ture. The following concepts are of importance:

Dimension: The dimension is that part of the

description of a variable which specifies the type of physi-

cal measurement that has to be carried out to determine its

magnitude. The dimension is dictated by nature and is there-

fore independent of the basic unit adopted for measurement,

which may be arbitrarily chosen by man. If the respective

magnitudes of two physical quantities with the same dimen-

sion are determined by comparison to two different basic

units, they cannot be compared directly. Yet the quantities

are not totally unrelated since their magnitudes can be com-

pared once the ratio between the basic units is specified.

This principle forms the basis for dimensional analysis of

structural models.

Dimensional Relationship: Some basic physical

laws such as Newton's second law relating mass M, length L
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and time t to force F make it possible to regard certain

quantities as physically completely equivalent to a pro-

duct of other terms, e.g.,

F ML (2.2.10)

The magnitude of each of the four quantities in this equation

is determined by expressing it as a multiple of a chosen

basic unit, such as a foot, a pound, a meter, etc. The

numerical values that are to be substituted into the equation

thus change with the basic units of measurement that are

chosen. The type of measurement to be performed, e.g.,

determining a length, determining a mass, is, however,

independent of the basic units that are chosen. The type

of measurement required to determine the magnitude of a

given variable is called its dimension. If we let F represent

the magnitude only of the variable (e.g. 10 feet, 20 pounds)

and D (F) the dimension only (e.g., length, mass) then, in

addition to equation (2.2.10), we can write

D(F) D D(-ML- D(M) D(L) (2.2.11)
D(F) Dy-j D(t) 2  (..1

The left and right hand sides of this equation are independent

of the basic units chosen for the variables, so that the

equation is more characteristic of the phenomenon than

equation (2.2.10) was. Equation 2.2.10 could also be written

Ft2  = ML

so that equation (2.2.11) would become

D(F) [ D(t)] 2 =D(M) D(L)

Thus multiplication and division of dimensions are both defined.

Fundamental Physical Quantities: There exist a

number of quantities such as length, mass and time whose

magnitude can be determined by one specific type of physical

measurement only. They will be called the fundamental phys-

ical quantities. Their number depends on the type of exper-

iment performed since heat, for instance, may be considered

a fundamental quantity only if thermodynamic transformations

are not studied in the experiment.
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If a physical quantity is not fundamental, its

magnitude can be determined by several types of measure-

ment. Force, for instance, can be determined from measure-

ments of mass, length and time or mass and acceleration

or directly by comparison to a unit force.

Dimensional Independence: It follows from the

definition of fundamental physical quantities that the

magnitude of none of them can be determined by a combina-

tion of the types of measurement used to determine the other

fundamental quantities. Thus the fundamental quantities are

considered dimensionally independent. The set of all the
fundamental quantities for a specific experiment will thus

contain all the types of measurement to be carried out

during the experiment, and is thus a basis for the dimen-

sions of the other quantities describing the phenomenon.

Consider the dimensions D(4,) of all the quanti-
ties qi that play a role in a specific experiment. Let i

range from 1 to n. If K with J = 1, 2, ..., r is the

complete set of fundamental physical quantities for the

experiment ( .. n Z r), each of the dimensions D(qi) can be

expressed as a function of all the D(K ), in the manner

demonstrated by equation (2.2.11). Thus

D(ji) = D.i(K l, K2, ... , Kr ) (2.2.12)

where i = 1, 2, ..., n

Since the processes of multiplication and division of

dimensions are defined, the laws for the inversion of

mathematical functions can be applied to equations (2.2.12).

Thus if any r of the n equations (2.2.12) are selected in

such a manner that the Jacobian

(illt 4 2' 008p'4r )  #i 0

b(kl' k2"' r) (2.2.13)
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it is possible to write explicitly

D(K3 ) = Dj (I 4 2, "' r) (2.2.14)

where j =i 2, .... r

Since the K form a complete set of dimensionally inde-
pendent quantities, equation (2.2.14) guarantees that

R10 q 2' "'' * , nIso form a complete set of dimensionally

independent quantities for the experiment. Thus functional

independence is not restricted to the fundamental quantities.

Substitution of equation (2.2.14) into the remaining (n-r)

equations of expression (2.2.12) shows that

D(4h) = Dh(ql, 2 , .. ,r) (2.2.15)

where h = r, (r + 1), ... , n.

Dimensional Analysis - Equation (2.2.15) indicates

which quantities have to be mieasured before 9 h is known.

As discussed in the section on dimensional relationships,

equation (2.2.15) must be augmented by an equation relating

the magnitudes of the quantities concerned:

9 = Fh(91 q 2 P 064S qr) (2.2.16)

Dh in equation (2.2.15) and Ph in equation (2.2.16) are

functions of identical form, i.e., if

Dh( 1 ' c20 9) [ 1 ) a D 9 2 ] b

then it follows that

Fh (q1 'R 2'9 3 ) = 3)C

The number of variables in the event has in effect been

reduced from n to r. While the basic units of measure-

ment for ql , q 2 , "'' q r can still be chosen arbitrarily,
the basic unit of measurement for h must now be calculated
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from equation (2.2.16). This is the basic principle of

dimensional analysis.

2.2.7 The Laws of Similitude. Suppose that the same

physical events occur in both the model and the prototype.

Then the form of function Dh, and therefore also the form

of function Fh, is the same for both structures. Let sub-

scripts m and p denote model and prototype properties re-

spectively. Then

q = Fh(q lm I9m-, &@ q)

9hp Fh(qp 9 2p' "''' qrp)

Since the relationship between model property Im and proto-

type property 9p has already been defined as

-
9 m = fqqp

the preceding equation can be rewritten

fqh9hp - Fh(fql9lp' fq242 '  ' fqrqrp)

Jhp Fh(9lp' q2p, .. qrp)

Since Fh is always a product or quotient of the variables

in the brackets, it will always be possible to factor

f Fh( l' fq2 20 fqr) Fh(qlp'2p. 9'' rp)

fqh Fh(lp' 9 2p' " 9 rp)

so that

fqh = Fh(f~l' fq2' "'f' fqr )  (2.2.17)

where

h = r, (r + 1), ... , n.

The original goal of the dimensional analysis, to establish

the relationship between the correlation functions, has

been achieved in equation (2.2.17). The correlation func-

tions may simply be regarded as the relationship between the
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basic units of measurement in model and prototype. It is

thus possible to conclude that

i) there are as many independent correlation func-

tions as there are dimensionally independent physical

quantities.

ii) the relationship between the correlation func-

tions is of a form identical to that of the relationship

between the dimensions of the corresponding physical quanti-

ties.

The laws of similitude are defined as the relations which

must exist between corresponding physical quantities if a

one to one correspondence between model and prototype is

to exist. They are easily derived from equation (2.2.17):

9hm = f h9hp = 9hpFh(fql ' f 2' 2 ' fqr )

(2.2.18)

where h = r, (r + 1), ... , n.

If the (n-r) laws of similitude (2.2.18) are obeyedi model

measurements can be used to predict prototype behavior.

2.2.8 Laws of Similitude for Quantities in Section 2.1.

Both the number of variables and the number of fundamental

physical quantities vary from experiment to experiment and

have to be guessed intuitively by the experimenter. If

superfluous variables are considered, unnecessary restric-

tions are imposed on the model since the number of laws of

similitude (2.2.18) will be largey than actually required.

If an essential variable is neglected, the model will not

satisfy one of the essential laws of similitude and the

prediction of the prototype behavior will be erroneous.

The reasoning outlined in Sections 2.2.7 and

2.2.8 will now be illustrated by the study of a specific

case: a structure fully described by the quantities defined

in Section 2.1. To conform with practice, it is assumed

that the model will not be used to investigate thermodynamic

transformations. Then all the types of physical measurement
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employed in the experiment are contained among the dimensions

of the following five fundamental physical quantities:

Table 2.2.1 - The fundamental physical quantities for the

properties described in Section 2.1.

Quantity Symbol Ft, Lb, Sec Unit Mkgs Unit

Length L Ft Meter

Mass M Lb Sec2/Ft Kg Sec2/M

Time t Sec Sec

Temperature T OF 0C

Heat H B.T.U. Calorie

Equations (2.2.12) are summarized in Table 2.2.2.

Table 2.2.2 - Powers to which quantities in equation (2.2.12

have to be raised.

r t L c x hr T Ga

L 1 0 -3 0 -1 0 -1 0 -2 1

M 0 0 1 -1 0 0 1 0 1 0
t 0 1 0 0-1 0 -2 0 -2 -2

T 0 0 0 -1 -1 -1 0 1 0 0
H. 0 .0 0 .1. 1. 0. 0. 0 0 0

It will be noted that

i) The equation of state does not contribute any

additional variables to Table 2.2.2, as will be shown in

Section 2.3.

ii) P and E are not listed in Table 2.2.2 since they

are dimensionally identical with W and r respectively. This
guarantees that fp = f and fu = fr . (where p is the surface stress'

The independent qUantities I''"' I. must now be chosen
subject to condition 2.2.13. Suitable choices are discussed

in Section 2.3; in this example r, c, h, G and a are used:
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D(r) = D(L) D(G) = D( )

Lt

MT

D(h) = D(l)
T (2.2.19)

Condition 2.2.13 becomes

1 0 0 0 0

0 H H 1

MTMT MT

(r. c, h, G, a) = 0 0 0 1 0
])(L, M, t, T, H) T2M 1 2M

Lt Lt L2 t 0
1 0 2L 0 0

2
M L T3 t

Thus equations (2.2.19) can be inverted to yield

D(L) = D(r) D(M) = or3)
a

D(T) = D(I) D(H) = D(G!3)
h ah

D(t) =D(/)
t) (2.2.20)

The dimensionally dependent variables can now be expressed

in terms of the dimensionally independent variables as in

equation (2.2.15):

D(t) = D Z ) D(@') = D(Gr)
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D(g) = D(2) D(T) = D(l)
a h

D(x) = D(ar-)
(2.2.21)

The form of functions Dh is thus known. The form of func-

tions Fh is therefore also known so that the laws of simili-

tude can be written down directly:

f
t 7_r t (rm = f fr

a

= -- Tm L Tpf P fh

x m  c r (2.2.22)fm P

Equations (2.2.22) are the equivalent of equation (2.2.18)

in the general theory.

2.3 THE EQUATIONS OF STATE OF THE MODEL AND PROTOTYPE MATERIALS

The equation of state relates those of the quantities

describing the material which are dependent on the external

influences acting on the structure. This relationship may

be time and temperature dependent, it may, or may not, vary

from point to point in the material and it may, or may not,

be different for different directions at the same point. In

addition, the events occurring in one direction may, or

may not, affect the events occurring in all other directions

(Poisson effect). There is some question as to whether the

events occurring at one point affect the events occurring

at neighboring points, eg. whether the stress gradient

has an effect on the crack formation in concrete(l0). The

general form of the equation of state will be developed in

stages.
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2.3.1 The Stress-strain Relationship. Assume that a

material is very gradually subjected to an external influence

for the first time in its history in such a manner that all

material properties except the state of stress and strain

are kept constant. The event may be described by the graph

in Figure 2.3.1. This curve, which is particular for the

material studied, can be described mathematically as

Y= ae+ be 2 + ... '2.3.1)

The physical nature of the event is not evident from this

equation, since it is not dimensionally homogeneous if a

and b are constants. A better form is

00 ,'

VL1 -a J(2.3.2)

where n is a constant and the equation is dimensionally

homogeneous. If, in a more general case, the derivatives

q are known at point A (e., ), this equation becomes

+ (e e2.). o (2.3.3)

where (-e)max e l (+e)max.

Both equation (2.3.3) and its limits of validity (i.e.,

± emax) may vary from point to point in the structure.

The superiority of equation (2.3.3) over equation (2.3.1)

will become evident when the equations of state of model and

prototype materials are compared later.

2.3.2 The Effect of Time. The time variable affects

the equation of state in two different manners:

a) Aging may change the shape of the curve in Fig. 2.3.1:

(Q4-(t- 'a ib e v a v t at

(2.3.4)
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and 4,, (t)- b+ .'
t"to

b) The rate at which the external influences are applied

may affect the shape of the curve in Fig. 2.3.1. The rate

of application is measured by means of the strain rate

so that

•1. -- "-

and k b L

2.3.3 The Effect of Temperature. The effect of tem-

perature on the equation of state is twofold like that of

time:

a) It may change the shape of the curve in Fig. 2.3.1:

.)~ + t (
(T-T.) -

(T) e- e I b at 'N * (2.3.6)

and L

0 " ( r E ( T O + 1 T T ,

b) A change in temperature may cause the material to

expand or shrink, setting up internal stresses and strains.

This fact has already been taken into account by the defini-

tion of the coefficient of linear expansion.

2.3.4 Materials Subjected to Several Load Cycles.

If the material in Fig. 2.3.1 is stressed to point A G (Go,,"o)

and the load is then removed, it may follow curve AB rather

than curve AO. Thus the stress-strain curve at A cannot be

described uniquely, but is dependent on a logical decision:

Follow OA on first loading cycle, continue along AC if load

is increased further, follow AB if load is decreased. AB

can be described in a manner similar to the description of OA:

28



n

where the bars in - indicate that the "curve when unloading"

is described.

The permanent deformation associated with this
phenomenon may lead to a considerable reduction of the initial

stresses caused by the manufacture of the structure. There-

fore, if a prototype structure is put through several load

cycles before it is subjected to the maximum load of its
lifetime, and the model has been manufactured in a manner
analogous to the prototype construction, the loading history

should be faithfully copied in the model.

2.3.5 The General Equation of State. The results
obtained so far can be combined if it is assumed that the

effects of time and temperature are independent. The
general equation of state then is

O'(r,*, , t, T,-) = (ro(r,O, , to, To, t#..) +

(e~~' - S 'aa

~~*v+ Tt+ ik L
bi' ot R-oL .

(2.3.7)
where the limits of the maximum positive strain, for instance,

are given by:

E max(r,1, , t, T, = max (r,' to, To, +

+ TT.) +

~I~~*.k *k r-M.
kst k!

(2.3.8)
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Similar equations can be written for the "curve when unloading".

They are far too complicated for use in mathematical investi-

gations, but can be used to advantage in the determination

of the similitude requirements for the equations of state

of the model and prototype materials. It should, however,

be noted that material properties such as creep, relaxation,

the Poisson effect, etc. which are discussed in Sections

2.3.7 to 2.3.10 are not reflected in these equations.

It has been shown in Section 2.2 that

em = 6 0 = f a
m p a

tm = fttp Tm = fTTp (2.3.9)

Term by term comparison of equation (2.3.7), written once

for the model and once for the prototype, yields the follow-

ing similitude requirements if equation (2.3.9) is used:

o. -f

sr.~nG es a

,_- , ,.,.) 1 .a . 4),. t, oT.),
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IcZmIatible.
2 f(2.3.11)

Once the requirements of equations (2.3.10) and (2.3.11)

are satisfied for all points (4r, 0, 4?) and all values of

n, J, k and &, the model end prototype materials are

compatible.

2.3.6 Examples of Equations of State.

a) Suppose equations (2.3.7) and (2.3.8) for a particu-

lar prototype material have the form

It is desired to determine the equation of state for the

model material if the values of fr, ft and fT are prescribed.

Comparison to equations (2.3.7) and (2.3.8) shows that for

the prototype

Accodin to or.ton (2..10 anV231)throrsod

a e Wode a

~.bt

According to equations (2.3.10) and (2.3.11) the correspond-

ing values for the model are

bt 0 VAT Ck
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b *1Ld W

2ffT
1, be

Thus the equation of state for the model material is

-o. + b . r C.T"' + rF4f&C tw* m

+ + e T .T]

b) Assume that due to technological considerations,

both model and prototype material are specified. It is

desired to determine under which conditions the two materials

will be compatible. Suppose

o,- [- __

20te ap* P 6

- [ &+ e. T. )] + - Tom -a M" + c,
According to equation (2.3.10)

f = -f g Z=
d cf. ao

Equation (i) does not contain a term corresponding to

e(Tm - Tom)C-m in equation (ii). Thus the model material

will satisfy the similitude requirements only if the model

is kept at a constant temperature Tm = Tom so that this

term vanishes. Equation (ii) does not contain a term

corresponding to be2 in equation (i). Since p 0, the
p p

two materials are not compatible.
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a) Fig. 2.3.2 shows several examples of compatible and

incompatible model and prototype materials. Proofs of

compatibility and incompatibility proceed as in Sections

(a) and (b) above.

2.3.7 Creep and Relaxation. Creep and relaxation are

time dependent phenomena which have not been taken into account

in the general equation of state. Creep describes those

phenomena which occur in the material if an external force

of constant magnitude remains applied for some period of

time, and to some extent after the influence has been

removed (creep recovery). According to F. Leonharo
( 2 )

the total creep strain in concrete is

k x kI x k2 A 6el (2.3.12)

where

6 = elastic strain

= variable dependent on relative humidity.

k = variable dependent on the duration of load
application.

k2 = variable depending on the composition of the
concrete and the thickness of the member.

Whereas it appears possible to control the variables on which

I and k, are dependent in a model study, research remains

to be done on factor k2.

Relaxation occurs where a c'nstant displacement

is applied to a structure. In steel prestressing cables,

for instance, it is dependent on both the initial stress

and the composition of the material. Thus if fe 1,

relaxation may be very difficult to model. Plexiglas, a

frequently used model material also displays creep prop-

erties. Fig. 2.3.3. compares typical creep properties of

steel, concrete (taken from(2 ) , Fig. 2.54 and 2.20) and
(19)

plexiglas (taken from F Fig. 1, p. 316).
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2.3.8 The Poisson Effect. The effect of the events

occurring in one direction at a point in a material on the

events occurring in another direction at the same point is

described by Poisson's Ratio4 . Since this ratio is dimen-

sionless, it must have the same value in both the model and

the prototype structure. Different values for 4 in model

and prototype can lead to serious errors:

Consider a case of plane strain where strains

x and ey have been measured in orthogonal directions at a

particular point. Then the stress in the direction of

e for a linear elastic homogeneous material is
WX E 1 ( -4) ex  +,0ye

(1 1 - 24) [1

If

0.40 (eg. a plastic) #P = 0.15 (eg. concrete)

and

Ex = 1000 #Ain/in, y = 500 Xin/in

then

(m = 286o

(6)p = ll50Ep

Cm. Em
Since f. _m. the model leads to a -prediction which

p p
is in error by 150%. In cases where the shape and boundary

conditions of a structure do not indicate if it will be in

a state of plane stress or plane strain, the Poisson Effect

makes it necessary to measure strains at a point in three

mutually orthogonal directions before the stress distri-

bution can be determined.

2.3.9 Crack Formation and Deflections. It has already

been shown that similitude of deflections in model and proto-

type can be maintained only if the strains in the two

structures are the same. The concrete structures where the
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deflections are affected considerably by the formation of

cracks, further requirements have to be met before defor-

mations will be similar:

a) Strain Level at Which Crack Formation Starts -

A crack will start at a point in a structure if = max

where &max has been defined in Section 2.3.5. If relation-

ships 2.3.11 are satisfied, similitude requirements for

the initiation of cracks will be satisfied. This is due

to the fact that the stress gradient . , which in the

most general case will be different in model and prototype,

has no effect on the crack formation, as discussed inRef. 10

b) Distance Between Cracks - It is shown in Ref. 10

that forfr f r k the distance between cracks in the model
will be f. times the distance in the prototype, as required
by similitude, if

i) the diameter of the individual reinforcing
bars is scaled correctly.

ii) the percentage reinforcement over the entire

section is the same in model and prototype. Hence, if

several bars in the prototype are replaced by a single bar

in the model, similitude requirements with respect to crack

formation may not be satisfied.

c) Width of Cracks.- The width of the cracks, which has

considerable influence on the deflection, is scaled by fr

if fr k-
2.3.10 Damping. If a structure is subjected to dynamic

loads, its behavior is considerably affected by the damping

properties of its material. Since the ratio of the actual

damping in the material to the critical damping is dimension-

less, it must have the same value in model and prototype.

2.4 THE DESIGN AND USE OF STRUCTURAL MODELS

The theory presented in Sections 2.1, 2.2 and 2.3

can be used to make the design of structural models a systematic
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process. This section presents two different methods of

design, one for cases where the model material is specified,

the other for cases where the model material can be chosen

freely. In both cases it will be assumed that the influences

on and properties of the prototype structure are known.

Where this is not the case, as discussed in Section 2.6.2,

additional problems are encountered.

Method I - Suppose that technological considerations

make the use of a particular model material mandatory.

Then the value of f. will be prescribed, as demonstrated

in example (b) of Section 2.3.6. The value of ft and fT

may or may not be prescribed. The design then proceeds as

follows:

i) Decide which fundamental physical quantities

are involved in the experiment. Let their number be r.

ii) Decide which variables are involved in the

experiment.

iii) Since there are r fundamental quantities,

r of the properties of the model may be chosen arbitrarily

as a dimensionally independent set as long as they satisfy

equation (2.2.13). If f£, ft and fT are prescribed by the

compatibility requirements of the equations of state, as in

example 2.3.6 b, only (r - 3) of the model properties may

be chosen arbitrarily.

iv) Calculate the correlation functions corre-

sponding to the r dimensionally independent properties of

step (iii) above.

v) Find the laws of similitude as demonstrated

in the example of Section 2.2.8.

vi) Find the value of the remaining model prop-

erties from the laws of similitude and the known values of

the correlation functions from step (iv).

Method II - Suppose that no particular material has

been specified for the model study. The design then pro-

ceeds as follows:
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i) Decide which fundamental physical quantities

are involved in the experiment. Let their number be r.

ii) Decide which variables are involved in the

experiment.

iii) Choose r of the model properties arbitrarily,

but so that equation (2.2.13) is satisfied. These quanti-

ties then form a complete dimensionally independent set

for the experiment.

iv) Calculate the correlation functions corre-

sponding to the quantities in step (iii).

v) Find the laws of similitude as demonstrated

in the example of Section 2.2.8.

vi) Find the value of the remaining model proper-

ties from the laws of similitude and the known values of

the correlation functions from step (iv).

vii) Find the equation of state for the model

material from the known values of f., ft and fT and the

known equation of state of the prototype material, as demon-

strated by example 2.3.6 (a). The method usually breaks

down at this stage because a model material with the required

equation of state cannot be found.

It should be noted that dimensional analysis can be used

in caaestudies only, i.e., it can be used to obtain equations

(2.1.11). The example of Section 2.2.8 will be used to

demonstrate that dimensional analysis cannot be used directly

to obtain equations (2.1.10), i.e., the general solution

to the problem. Equations (2.2.22) show that

f & M fGfr

But it will be equally correct to use the remaining equations

of (2.2.22) to write
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wi~ere a% to a are constants. In addition, since fp has
the same value as another factor -- could be

multiplied into the right hand side. The value of the

constants a, to a5 cannot be found by dimensional analysis

since the value of each of the brackets according to equa-

tions(2.2.22)cannot be different from one. The model can,

however, be used to find the relationship

r = F (G, r, t, a, g, x, c, T, h, P) (2.4.2)

This is achieved by varying the terms on the right hand side

one by one, keeping the others constant, and noting the

corresponding changes in 0 . If expression(2.4.2)is in

the form of a product, it can be used to determine a- to

a. in equation 2.4.1 by forming the quotient

f =m . F(GCm, ... ,Pm) (2.4.3)Wp F(Gp, ..... ,Pp)

2.5 MODEL ANALYSIS AS A RANDOM PROCESS

In the derivation of the Laws of Similitude it

was assumed tacitly that

i) physical phenomena in the prototype can be repre-

sented by a "certain" scheme of knowledge, i.e., each prop-

erty can be described by a fixed number at a particular

point in space at a particular time.

ii) physical phenomena in the model can be repre-

sented by a "certain" scheme of knowledge.

iii) the model to prototype relationships are "certain"

numbers.

None of these assumptions hold in actual situations since

such random processes as manufacture and loading of model

and prototype are always involved. It therefore becomes

necessary to use the concepts of mead, variance, standard

deviation and statistical independence as defined in the

Theory of Statistics , Ref. 16. Instead of equations (.2.1.10)
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and (2.1.11) it becomes necessary to find

i) the variance of the mean of the prototype out-

come as predicted from the mean outcome of the model, its

variance and the variance of the correlation functions.

ii) the standard deviation of the prototype outcome

as predicted from the standard deviation of the model

outcome and the correlation functions.

While a statistical investigation is very essential to the

usefulness and reliability of a model test, particularly

in cases such as blast loading where errors may occur in

the modelling of a large number of properties, investiga-

tions so far have been very limited due to the great number

of difficulties encountered. This section will be restricted

to a presentation of basic principles and the outline of

a method of solution.

2.5.1 Determination of Stress, Strain or Deflection

Distribution. The deviation of the actual prototype behav-

ior from that predicted by a model study will be due to

a combination of the deviations of the assumed model and

prototype properties.

i) Deviations in Geometry - The position of a point

may deviate from its mean position in any direction in 3-

dimensional space. This can be represented by a 3-dimen-

sional density function d(,#, * ) which may vary from

point to point in the structure, i.e.

= [d(r,.,1)](r^4,) (2.1)

Whether or not r,*and 4 are statistically independent

variables depends on the method of manufacture. If the

method of manufacture is such that r, 0, and f for each

point are determined independently, equation (2.5.1) can

be rewritten

[C.~]v.q (nS[4I (Y da(0), wlj (',,,q) (2.5.2)

The notation on the right hand side indicates that dl(r),
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d2(*) and d3 (?) may all vary from point to point in the struc-

ture.

ii) Deviations in Material Properties - Consider any

material property, denoted by A. Both the mean and the

variance of A may be different for different points on

the structure so that

d (A) = [d (A)] (r,* (2.5.3)

Both the nature of density function d(A) and its change

with r, 0 and q depend on the method of manufacture of
the material and the method of fabrication of the struc-

ture. So, for instance, the variation in material prop-

erties of a welded steel structure will depend on both the

quality control of the steel mill and the workmanship of

the individual welds.

iii) Deviations in External Influences - The uncer-

tainty in the exact nature and amount of such external

influences as earthquakes or blast loading is very large

since, contrary to cases (i) and (ii) above, there is

little human control over them. Deviations in any specific

influence B may again be different from point to point in the

structure, i.e.

d(B) = [d(B)] (r,*, q) (2.5.4)

iv) Deviations in the Equation of State - Any of the

partial derivatives used in Section 2.3 to specify the

equation of state may deviate from its assumed value.

This can again be represented by a density function

d(C) = [d(C)] (r,*,1) (2.5)

v), Deviations in the Correlation Functions - The

necessity of using correlation functions rather than ratios

to define the relationship between model and prototype can

now be demonstrated. Assume, for instance, that the material

property A has a normal distribution in both model and

prototype. Then its density function is
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- (A A)I

oL (A s
, A (2.5.6)

On account of equation (2.5.3) the standard deviation SA
and the mean ^A will be functions of r,* and f in both

model and prototype. The correlation function

Am
fA = -

A p

will thus also have a mean and a standard deviation depend-

ing on r,, q so that f itself must in fact in the most

general case be a function of r,* andf.

The density function for fA will not be geomet-

rically similar to that of A. Assume, for instance, that

material property A has mean values of 4 and 1 in proto-

type and model respectively. Let the density functions

have a triangular graph and maximum deviations of + 10%

in the model and ± 15% in the prototype, as shown in Fig.

2.5.1. The density function for fA can then be determined

numerically as shown in Tables 2.5.1 and 2.5.2.

Table 2.5.1 - The table gives values of

m

d(A,)6Av 0.0312 0.0935 0.156 0.219 0.219 0.156 0.0935 0.0312

a&AM AP 3.65 3.75 3.85 3.95 4.05 4.15 4.25 4.35
0.055 0.875 4.16 4.29 4.40 4.51 4.63 4.75 4.86 4.97
0.167 0.925 3.95 4.o6 4.16 4.27 4.38 4.49 4.59 4.70
0.278 0.975 3.75 3.85 3.95 4.05 4.15 4.26 4.36 4.46
0.278 1.025 3.56 3.66 3.76 3.86 ,3.95 4.05 4.15 4.25
0.167 1.075 3.40 3.49 3.58 3.68 3.77 3.86 3.96 4.05
0.055.1.125 3.25 3.34 3.43 3.52 3.60 3.69 3.78 3.87

d(A) xAA it the probability that A lies between (A-AA) and

(A + J&A), where AAp = O.1, A m = 0.05. Subscript m denotes

model, p denotes prototype.
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In each column,

Corrected values have been obtained from the previous row

by direct scaling so that

as required by theory of statistics. Then

CL( ~ x CORWECtE VALUE

The last row is used to obtain the mean for 
f'.

/UA a_ CL(A)ATA -4.00
The graph of the density function d(fr) is shown in Fig.

A
2.5.]. It may be concluded that

a) The mean of fA1 equals the quotient of the

means of the model and prototype properties.

b) The maximum deviations of the correlation

function f" are considerably larger than those of either the

model or the prototype property: + 28% and - 22%.

c) The distribution of the correlation function

Is skew whereas that of the properties themselves was sym-

metric.

vi) The Statistical Model Investigation - The statistical

model investigation proceeds as follows:

a) Density functions for the geometric and

material properties, the external influences and the equa-

tions of state are either assumed or determined experiment-

ally. They will depend on the particular manufacturing pro-

cess, loading process, etc. Little work appears to have

been done in this direction up to the present.

b) The density functions for the correlation

functions of the properties in (a) are determined as demon-

strated in Tables 2.5.1 and 2.5.2. The amount of computa-

tion involved is large, and will increase if d(A m ) and d(Ap

change from point to point in the structure.

c) The model output Dm is measured a consider-

able number of times so that its density function d(Dm ) can

be found.



d) The density function d(fD) must be found

before the density function d(D p) of the prototype output

Dp can be determined. But this requires that fD be known

as a function of all the other correlation functions of the

experiment, since D may be statistically dependent on all

the other structural properties, i.e., variations in any

of the structural properties may cause D to vary statisti-

cally. We come to the important conclusion that statisti-

cal analysis demands a knowledge of the general equations

(2.1.11) governing the phenomenon: a case study alone is not

sufficient. Methods to obtain equations (2.1.11) have

already been discussed in Section 2.4. Suppose that it has

been found that

fr - . k ' 1 (2.5-7)

If it is assumed that the variables on the right are statis-

tically independent, the density function for f can be

found from

(2.5.8)
If the right hand members of equation (2.5.8) vary from

point to point on the structure, d(f,) has to be obtained

for each point individually. The amount of numerical work

involved makes the use of a computer desirable.

e) Once d(f.) is known, it is possible to

determine d(or ) in the manner of Tables 2.5.1 and 2.5.2,

using the relationship

1- (2.5.9)

vii) Conclusions -
a) If the variables involved in the experiment

are statistically independent, the mean of the prototype

outcome will have the same value as the outcome when a "cer-

tain" scheme of knowledge is assumed.

b) Since the correlation functions tend to have
a broad distribution as shown in the example of Fig. 2.5.1,
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the prototype outcome will have a much larger deviation

than the model outcome.

c) Conclusions (a) and (b) prove the impor-

tance of taking a large number of readings of the same

outcome in the model experiment. Only in this manner can

the effect of the wide distribution of the correlation

functions be eliminated through the determination of a

reliable mean value.

2.5.2 Ultimate Load Models. Ferry Borges, Ref. 11, has

investigated the effect of fr on the distribution of the

prototype results as predicted from ultimate load model

studies. His conclusions are

a) An increase in dimensions considerably

decreases dispersions, regardless of the failure criterion

adopted.

b) The transformation of the mean values depends

largely on the failure criterion adopted. In brittle rup-

ture, the mean values decrease as the dimensions increase.

In ductile rupture, the behavior of the mean values depends

on the number of failure surfaces. Finally, in the theory

of similitude for failure by deformation the mean values

remain constant with changes of scale. The latter result

agrees with the deduction in Section 2.5.1.

Since there are factors besides f whichr
affect the prediction of the prototype results from the

model study, this investigation is by mo means complete.

2.6 STATIC AND DYNAMIC STUDIES OF MASSIVE STRUCTURES

In this section, the theory derived in preceding

sections will be applied specifically to structures whose

mass plays a significant part in their behavior.

2.6.1 The .Effect of Mass on Structural Behavior.

The mass of a structure affects its behavior in two different

ways:
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a) It causes body forces due to the earth's attrac-

tion. The concept of an "earth acceleration" causing these

forces is conventional and frequently convenient, but it

may give the erroneous impression that model studies involv-

ing earth attraction are dynamic in character. It is

preferable to base similitude of model and prototype on

Newton's Law of Mass Attraction:

G M (2.6.1)

where G = force of attraction between masses m and M

r = distance between masses

%- = gravitational constant

Since in most cases the earth's mass M as well asrand r,

the distance from the object to the earth's center, are the

same for model and prototype, the ratio between the earth

attraction on them is entirely determined by the ratio of

their total masses. Earth attraction must therefore be

considered a static phenomenon.

b) The mass of a structure or of its loads

also gives rise to inertia forces once the structure as

a whole or parts of it are subjected to accelerations.

These accelerations may be caused by dynamic surface loads,

support accelerations or free vibrations of the structure.

According to Newton's Second Law

P = mi = -ii (2.6.2)

where F = force applied to particle mass m

a acceleration of m due to P

F inertia force, equal in magnitude but
opposite in direction to F.

Since the acceleration i is the second derivative of dis-

tance with time, inertia forces are a dynamic phenomenon.
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2.6.2 Types of Model Studies Involving Mass. The

physical laws outlined in the preceding section make the sub-

division of model studies involving mass into two categories

natural. Each of the two categories will be treated sepa-

rately in more detail in later sections.

i) Static Studies Involving Mass - The body forces

are caused by earth attraction only, all surface loads are

static and the supports do not move. Typical examples are

a) Massive concrete structures such as dams.

b) Structures designed mainly to carry their

own dead weight, e.g. large span bridges.

c) Structures subjected to loads caused by

heavy masses, e.g. grain silos and coal bunkers.

ii) Dynamic Studies Involving Mass. If the prototype

structure is subjected to dynamic surface forces, support

accelerations or free vibrations, a dynamic model study with

proper regard to inertia forces has to be undertaken.

Dynamic studies may, or may not, iriclude also the effects

of static surface loads and earth attraction acting on the

prototype, depending on the relative size of the forces

involved. Earth attraction can,for instance, frequently

be disregarded. Since concrete, for example, has a mass

attraction per cubic foot roughly equivalent to one psi

acting on the surface, the dead weight stresses of say 12"

thick shells subjected to blast load pressures of 25 to 200

psi can safely be neglected.

Typical examples of dynamic studies are

a) Surface structures such as dams or shells

responding to dynamic surface loads.

b) Articulated structures such as bridges, trans-

mission towers or radar antennae subjected to drag loads

caused by atomic explosions.

c) Structures supporting heavy masses and sub-

jected to either blast loads or seismic support motion.

As in the case of model studies where mass is not of impor-
tance, the following types of structural behavior may be

investigated:
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i) Stress or strain distributions and defor-

mations if a structure is linearly elastic (i.e., super-

position valid if deformations are small) or if the struc-

ture is nonlinearly elastic or plastic (superposition not

valid).

ii) Ultimate load bearing capacity of the struc-

ture.

iii) Determination of the loading causing elastic

or inelastic structural instability.

In addition, however, the gravity and inertia forces on

masses supported by the structure should be faithfully

reproduced in the model. Both the effect of their inertia

forces on the overall structural action and their destruc-

tive action as missiles are of importance. It is thus

important to reproduce the interaction between the masses

themselves, such as friction forces, as well as the inter-

action between the masses and the structure.

2.6.3 The Laws of Similitude for Massive Structures.

It will be assumed in this section that the correlation

functions can be chosen independently of the model material,

i.e., method II of Section 2.4 is used. The following

relationships between the correlation functions have already

been derived in Section 2.2.8:

Accelerations: fa = frft 2  (2.6.3)

a r t

Body Forces: f = fgfa = fgfrf- 2  (2.6.4)

Surface Forces: ft = f = f fafG r ga r

- f f 2 f 2  (2.6.5)

These equations are valid for both static and dynamic studies.

Generally f r has to have a value considerably less than unity

to make a model study possible. This can be achieved by

varying either tne parameter fa which is dependent on the

external influences or the parameters fr and fg which are

dependent on the model material.
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The difference between the laws of similitude

for static and dynamic studies lies in the freedom that may

be exercised in the choice of the correlation functions.

In a static study where no time measurements need to be

carried out on the model, equation (2.6.3) is automatically

satisfied since ft can be given an arbitrary value. In a

dynamic model study, the time correlation function f is

of much more importance since the prototype load-time

function and support acceleration-time function must be

scaled for the model according to ft. The choice of ft

depends largely upon the nature of the dynamic load. It

is convenient to distinguish between the following types:

Load Type I - The applied surface forces are known

as a function of both space and time. If it is assumed

that the technical problems which arise, e.g. in the model-

ing of load rise times of about 2 milliseconds, can be

solved, this type of dynamic load imposes no restrictions

on the correlation functions.

Load Type II - The applied surface forces are

not known as a function of both space and time, but are

caused by phenomena subject to known physical laws, e.g.

those of aerodynamics. The model must then be subjected

to the actual physical event that causes the loading, but

the variables involved (e.g. overpressure) may be scaled

down according to the chosen values of the correlation

functions. The laws of similitude must now cover not only

the model itself, but also the events leading to the load-

ing. In many cases it will still be possible to chose

f. and ft different from unity.

Load Type III - The dynamic gurface forces and

the physical laws of the events by which they are caused,

are not exactly known, as in some types of blast loading.

The model must then be subjected to the actual prototype

loading which implies that f t = fr = 1, so that the choice

of model materials now becomes very limited. There is,
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in addition, no guarantee that fr is not also one of the
parameters affecting the space-time distribution of the

loading, so that in effect structures subjected to type

III loads cannot always be modelled with confidence.

2.6.4 Static Model Studies with Natural Earth Attrac-

tion. According to Newton's Gravitational Law, (2.6.1),

applied to the earth (mass M) and model or prototype

respectively, the body forces are

G Mgm
m r

Mg
r (2.6.6)

so that G (2
Gm ggf G f -- = -- = f (2.6.7)

Substitution into equation (2.6.5) yields

fr= fgfr (2.6.8)

The value of f can generally be varied within very narrow

limits only, as is shown in Table 2.6.1.

Table 2.6.1 - Typical Average Values of Density Ratio fg.

Prototype Material

Model Steel Aluminum Concrete Masonry

Material Spec. Mass 7.75 2.65 2.40 2.00

Mortar 1.65 0.213 0.621 0.687 o.825

Gypsum 2.30 0.296 0.869 0.959 1.150

Plexiglas 1.20 0.165 0.454 0.500 0.600

Rubber 1.10 0.142 0.415 0.458 O.550
Steel 7.75 1.000 2.920 3.230 3.875

Aluminum 2.65 0.341 1.000 1.100 1.325

Ph. Bronze 8.90 1.150 3.360 3.710 4.450

The table shows that'the density ratio is less than 5

whereas the length ratio is normally less than 0.125.

It therefore follows from equation (2.6.8) that the stress
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ratio f, is less than 1. But according to the second of

equations (2.3.10), the stress ratio for linearly elastic

model and prototype materials is

Em
f = E (2.6.9)

p

Thus the model material must be less rigid than.the proto-

type material. It is suggested that instead of choosing

f and then searching for a model material which is suchr
that f. and f satisfy equation (2.6.8), the inverse pro-

cedure is followed, as demonstrated in the following example.

Example: A plexiglas model of a steel bridge is tested

in the linear elastic range. If it is assumed

that E = 450,000 psi for plexiglas

E = 30 x 106 psi for steel,

find the length correlation function fr required

so that static body forces are correctly repro-

duced in the model.

Solution: From equation (2.6.9):

o.45 x 106  - 0.01530 x 100

From Table 2.6.1: f = 0.165

From equation (2.6.8): f = 0.015 - 1 (Ans.)
0.165 11

This example demonstrates that unless f or fa are artifi-

cially increased, relatively large models are required to

reproduce gravity stresses faithfully. Where very flexible

materials are used, e.g., rubber models of concrete dams(4 ),,

smaller models are feasible, but the high Poisson Ratio of

the model material frequently makes the test results unreli-
able (see Section 2.3.8).
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2.6.5 Technical Aspects of Static Studies with Natural

Earth Attraction. If the model study is concerned with the

ultimate load bearing capacity or with the stability of a

structure, direct observation without the use of sensors

and recording devices for strains and deflections will be

sufficient, so that both the problems of body force load-

ing and of model observation are automatically solved.

If the stress distribution in the structure is to be deter-

mined, considerable difficulties both in the determination

of the strain distribution and the derivation of the corre-

sponding stress distribution are experienced.

i) Strain Distribution - The strains caused by the dead

weight of a model are extremely small. Consider for instance

the extremely favorable case of a mortar model (E = 75,000 psi,

w = 100 pcf) of a 500' iigh concrete wall with fr = 0.01.

Then the maximum strain at the foot of the model is of the

order

I x100 x 06= 50/^in/in.
144 x 75,000

Not even the highly developed electrical strain measuring

devices are capable of reliable detection at such low strain

levels. Another problem is the determination of a zero

reading, i.e., a strain gage reading for zero body forces.

To overcome this serious problem and at the same time to

increase the strain levels, tests have been carried out

where the strains are first measured with the model in an

upright position, and then with the model inverted(40).

In this manner, strain readings are doubled. In addition

to the mechanical problems caused by the rotation of large

models about a horizontal axis, the method possesses an

inherent inaccuracy where the stress-strain properties of the

model are different in tension and in compression. In most

cases, the strain level remains too low for accurate sensing

and recording. Additional difficulties are encountered if

strains inside the model are to be measured. Since it is
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seldom possible to make the sensing device out of the model

material, the presence of the device will cause discontinu-

ities and changes in the strain field which frequently may

lead to erroneous results.

ii) The problems encountered in deriving the stress

distribution of a 3-dimensional model from its strain dis-

tribution are of a technical nature. They have already

been discussed in Section 2.3.8.

2.6.6 Static Model Studies with Earth Attraction

Artificially Induced by Acceleration. The large models

required by the method of Section 2.6.4 and the unsatisfac-

torily low strain levels obtained lead to the use of artifi-

cial methods of simulating earth attraction. Consider

equation (2.6.5):

f04 = f gfa fr

Suppose that in a particular model study it is considered

essential to reproduce both the stress-strain character-

istics and shrinkage and creep properties of the prototype

material, and that this can be achieved only by using the

prototype material as model material. Then

f, = fg = 1

and equation (2.6.5) becomes

fafr = 1 (2.6.10)

The model must therefore be subjected to very considerable

accelerations, to which it will respond dynamically. In

order to demonstrate the implications of the dynamic response,

a typical though simplified example is given: consider a

3'0" x 4" x 1" mortar beam (E = 3 x 10 psi, w = 100 pcf)

which is simply supported on a sleigh as shown in Fig. 2.6.1.

If the sleigh is given a constant acceleration i along

a straight line, the beam is subjected to constant forces:

F = &3 L
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at each of the supports, where

9 = mass of beam per unit length

L = length of beam.

The dynamic response of the beam is analysed in Appendix A.

The actual bending moment at midspan is calculated and com-

pared to the static bending moment caused by a load 3 per

unit length of the beam. Since 9g is the body force per

unit length which we actually wish to obtain, and which would

have been obtained if the beam were perfectly rigid, the

calculations give the error caused by the dynamic response

of the beam.

The results are presented in Fig. 2.6.2. It

may be concluded that

i) The model is subjected to stresses far exceeding

those of the steady state, represented by 100% in Fig. 2.6.2.

The method is thus not suited to ultimate strength tests.

ii) Models frequently have less than 5% of the critical

damping. No readings should therefore be taken before the

model has been accelerated for at least 2 seconds. If 2

more seconds are required to take readings, and the model is

subjected to 20 x earth acceleration, the distance travelled

is

s= at 2 =  5150 ft.

Since the model has to be decelerated more gradually, the

total test run becomes very long. Linear acceleration may

be eliminated as a practical method of model testing.

Accelerations can also be achieved by means of

centrifuges. In addition to economic problems and techni-

cal difficulties such as strain measurement' on fast moving

models, the method possesses an inherent source of error, which

will be demonstrated by means of an example:

Suppose that the gravity stress distribution in

a 1200' wide and 400' high concrete dam is to be determined.

A model material is chosen so that fg = 1 and fr = 0.2.
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A 10' 0" diameter centrifuge is available and accuracy in

model manufacture and strain measurements limits fr to 1

in 800. Then

f 800 = 160.
fr 5

A particle moving along a circle with radius r at a constant

angular velocity w is subjected to a constant centripetal

acceleration

a = w2r

Thus if point A in figure 2.6.3 is to have an acceleration of

160 x 32.2 ft/sec 2 , the frequency of the centrifuge must be

f =160 x 32.2 5.25 rps
2f 4.75

At points B and C on the center line, the acceleration

will be about 5% in error, but will act in the correct

direction. At D, the component parallel to OC will be

5% in error, and there is an additional acceleration equal

to 16% of the acceleration at A acting in direction DB.

The inherent errors are thus not excessive and the method

will be useful if the technical difficulties can be overcome.

2.6.7 Static Model Studies with Earth Attraction

Artificially Induced by Surface Forces. The earth attrac-

tion on the prototype material can also be simulated by the

application of surface loads at discrete locations on the

model. The method has, for instance, been used in model

studies of concrete arch dams by Rocha, Serafim and Ferreira ( 34 )

If the forces are applied to the face of the model, the

continuity of the model material need not be disturbed,

but considerable errors in the stress distribution in thick

models may result. If they are applied inside the model,

the stiffness of the structure is affected. A quantitative

analysis of these problems is given in Section 2.7.
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The effect of the surface loads on the model

can be represented by assigning the model material an

artificial specific mass gm. Suppose

Pm = total surface load applied to entire model.

Wm  = total weight of model.

Vm = total volume of model.

a = earth acceleratione

Then P + Wm(61
- m Pim + gm (2.6.11)

Va Va -me me

If T = artificial specific mass correlation function
g

w = specific gravity of prototype
-p

then Prg - - m + fg
p VmWp (2.6.12)

It is now possible to select both the size of the model

(i.e., fr ) and the model material (i.e. f.and fg) then'

to determine the required f from equation (2.6.5) and

finally to compute Pm from equation (2.6.12). The rules

according to which Pm should be distributed over the model

will be discussed in Section 2.7.

Artificial increase of model specific mass could

also be achieved by making the model of a magnetic material

and placing it in a magnetic field. The method has the

basic limitation that magnetic lines of force leave a surface

normally, i.e., the direction of the forces would not agree

with the direction of earth attraction. In addition, the

magnetic force is not uniformly distributed over the thickness

of the model.

2.6.8 Dynamic Model Studies with Natural Earth Attraction.

A model study becomes dynamic as soon as dynamic surface

forces or support accelerations must be reproduced. The
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structure may, or may not, at the same time be subjected

to static surface loads and earth attraction. It now

becomes of importance to differentiate between loads hav-

ing significant mass, and thus subject to inertia forces

like the structure itself, and loads whose force only needs

to be simulated. The relationship between the correlation

functions and the importance of ft have already been dis-

cussed in Section 2.6.3. In this case, as in Section 2.6.4,

f G= f

so that f4 = fgfr (2.6.13)

In addition, fa = 1

so that fr = ft2  (2.6.14)

Once the model material has been chosen, fe and f are

known and f can be determined from equation (2.6.13).r
Then f t is given by equation (2.6.14). Since surface

Loads must be scaled according to the stress correlation

function fe , the load-time curve for the model is now

uniquely determined.

This method therefore permits the effect of
both earth attraction and dynamic surface loads to be

exactly reproduced in the model, but it is tacitly assumed
that the loading is of Type I. If the prototype is sub-

jected to support accelerations, these must be applied to

the model in the ratio fa = 1. The technical difficulties

are the same as in Section 2.6.5. Data recording will,

however, become more complicated since strain versus time

curves must now be obtained.
2.6.9 Dynamic Model Studies with Artificially Induced

Earth Attraction. In many model studies, the previous method

may not be suitable because the models become too large

or because the loading is not of Type I. It will then be

necessary to simulate earth attraction artificially. While

the earth attraction body forces must be reproduced artificially
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it should be noted that the inertia body forces will auto-

matically satisfy the laws of similitude as is demonstrated

by the following example:

Consider a point load P acting on a particle

of unit volume with specific mass gp, giving it an acceler-

ation a according to Newton's Second Law:p

Pp = gPap (2.6.15)

A model of the particle is made at scale fr and the surface

forces are scaled in ratio fe.. We wish to prove that

the model is automatically subjected to the correct inertia

body forces but that the laws of similitude for earth attrac-

tion are not satisfied unless fa = 1, a case which we have

excluded in this section.

The model properties are

2pm = f frp

g = fg%P

Vm = P (2.6.16)r

According to Newton's Second Law

Pm = Vmgmam

Substituting from equation (2.6.16):

fa.f2 P = f3f arrp I- gPm

Using equation (2.6.15):

f T
am a pfrf

f fr ~r fgfa (2.6.17)

Equations (2.6.17) and (2.6.5) are identical so that inertia

forces are always correctly modeled.
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The earth attraction on the prototype is

2 (2.6.18)

where V, M and r for Newton's Gravitational Law have been

defined previously. The earth attraction on the model is

Mf3f
Am = (2.6.19)

r

But since Am is a point force, it follows that

Am f frAp (2.6.20)

Equations (2.6.18) to (2.6.20) yield

fa - frfg (2.6.21)

Equation (2.6.21) is a special case of equation (2.6.5)

which proves that the earth attraction is modelled correctly

only if fa = 1.

If fa / 1, artificial methods can be used to

reproduce the earth attraction body forces. It is con-

sidered impractical to apply both a blast load and an

artificial acceleration to the model, and the discussion

will therefore be restricted to the use of surface forces

for the simulation of earth attraction.

As shown in Section 2.6.7, both the size of the

model (i.e., fr ) and the model material (i.e., f. and f )
may be chosen arbitrarily or in such a manner that they

satisfy the conditions imposed by the dynamic surface loads,

Type II or III. Then f is determined from equation (2.6.5)

and Pm from equation (2.6.12). As shown previously, the inertia

body forces due to the dynamic surface loads are automatically

reproduced correctly in the model. The inertia body forces

due to support accelerations will be scaled correctly if

the support accelerations of the model are calculated

using fa as determined from equation (2.6.5).

62



The problem of reproduction of gravity stresses

in models is thus basically the same in static and in

dynamic studies. One technical problem is, however, added

in the latter case since the surface loads simulating earth

acceleration have to remain constant when the model vibrates.

2.6.10 Modelling of Heavy Masses Supported by Structures.

A great variety of important public, industrial and military

structures support heavy masses e.g., warehouses, grain

silos, oil storage tanks, etc. Since the dynamic structural

action in these cases is largely determined by the supported

masses, their effect may not be neglected in a model study.

In particular, it is necessary to take into account:

a) the earth attraction on them.

b) inertia forces due to dynamic response.

c) friction forces acting between individual loads

and between the loads and the structure.

d) their destructive action if dynamic response of

the structure, or direct exposure to dynamic external loads,

turns them into projectiles.

Factors (a) and (b) may be studied in the same manner as

the dead weight and inertia forces of the structure itself,

as discussed previously. Factors (c) and (d) are discussed

individually in the following two sections.

i) Modelling of Friction Forces - Consider a proto-

type mass Mp supported by a structure so that the coefficient

of friction between them iS/Ap. The'maximum acceleration

ap to which the prototype structure may be subjected before

the mass starts moving relative to the structure can be

deduced from Fig. 2.6.4

a p =*pae

where a = earth acceleration.e

Similarly for the model

a m  aAmae
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so that

am AM

ap ^ (2.6.22)

As discussed previously, accelerations in the model frequently

are considerably larger than in the prototype, but generally

/mq*p ^P In these cases, similarly with regard to friction

forces can be achieved by artificial methods only.

a) Increase the normal force N. An additional

force P normal to the surface between model structure and

load is provided so that

N = P + Mmae

and

MMam = /m(P + Nia e )

so that

am -m [ P + ]

a Ap LMmae (2.6.23)

Once fa and f are known, the required value of P can bea A
calculated from equation (2.6.23). The force P can be

obtained by using magnets as loads and making the model of

a magnetic substance where the loads rest on it. The

method has the advantage that, once the load starts moving

relative to the structure, the full friction force will

remain acting between their surfaces and the load will again

come to rest relative to the structure once the inertia

forces-become less than the maximum available friction force.

This is of importance where a structure goes through several

cycles of vibration before it reaches maximum stress or some-

times ultimate failure conditions.

b) Increase coefficient of friction. The mass

representing the prototype load may also be glued to the

model, particularly if it is reasonable to assume that the

load on the prototype will not move relative to the struc-

ture, so that it is only necessary to obtain a sufficiently
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large friction force in the model. It must, however, be

remembered that, once the bond Is broken, the behavior

of model and prototype loads is no longer similar.

These artificial methods will not be necessary where natural

earth attraction is employed in the model study, i.e., fa = 1.

ii) Modeling of Projectile Action - Once a load moves

relative to the structure, it becomes a projectile which,

upon impact with parts of the structure or with its contents,

may cause considerable damage. True modeling of this

phenomenon is particularly important since a general ana-

lytical treatment of the problem is not available (see Ref. 30,

p. 127 et seq.) The following limitations are imposed upon

the correlation functions for the geometry and material

properties of the masses representing the model loads:

a) Since the size of the impact area may be

of importance, the model load must be geometrically simi-

lar to the prototype load, and fr for load and structure

must be the same.

b) While the load is still moving with the struc-

ture, it is subjected to the same acceleration so that fa

is the same for both, and thus ft must also be the same

(since fr is already fixed).

c) The ratio between the prototype and model

kinetic energies (Jmv 2) has to be the same for structure

and load so that in addition to the preceding, fg = 1.

d) The percentage of the kinetic energy which

must be absorbed by the structure dep6nds largely upon the

nature of the impact if the projectile mass is considerably

smaller than that of the structure and the masses still

adhering to it. It is considerably less for plastic than for

elastic impacts. For this phenomenon to be correctly repro-

duced, it is essential that fr is the same for structure and

load.

It may thus be concluded that, for missile action to be

correctly modeled, the correlation functions fr' ft' fg
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and Tr have to be identical for the structure and its loads.

In addition, the requirements of Section (a) have to be

met. These conditions are not, however, sufficient to

guarantee similitude for impulsive action since factors

such as the crystalline structure of the prototype struc-

tural material and load may be of importance.

2.7 THE SIMULATION OF BODY FORCES BY SURFACE LOADS

It has been shown in previous sections that it

frequently becomes desirable to replace the body forces

due to earth attraction by a series of discrete surface

loads. This section is devoted to an analysis of the

errors resulting from the approximation, and to methods

that may be employed to compensate for, or at least to

minimize, the error.

Consider a structure loaded with n discrete
surface forces L such that their sum Pm satisfies the

relationship

* L V, w,, -f
"' ~ (2.7.1)

derived in Section (2.6.7). Divide the total volume VM
of the structure into n subvolumes V, each proportional

to its load Li. so that

i (2.7.2)

The subdivision has to be carried out in such a manner that

the influence volumes are as geometrically similar as

possible. Assume that a typical influence volume, as

shown in plan in Fig. 2.7.1, is small enough so that its

thickness t can be considered constant. Let load L be

applied as a uniform stress p over area a such that the

centers of gravity of V and a coincide In plan. The

problem now becomes the determination of the stresses

caused in element v by the replacement of the uniformly
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distributed body force, which should exist according to the

requirements of the exact theory of similitude, by the

surface force L In the model, these stresses will be

added vectorially to the stresses caused by the overall

structural action.

Consider a section ZZ through the center of

gravity of element Vj, taken so that the length (ti + .2)

is a minimum for the figure. If shape ABCD is not too

irregular, the direction of ZZ will be a good approximation

to the direction of maximum stiffness of the element. To

obtain an upper limit to the error stress field, it will

thus be safe to consider a slice of unit thickness, as shown

in Fig. 2.7.2, where t is the smaller of lengths ti and 42"

The analysis will be based on the following assumptions and

conditions:

i) Since an upper limit to the error stress field

is sought, a condition of plane stress over EFGH may be

assumed.

ii) The model material is homogeneous and linearly

elastic in the range considered. This implies either that

the entire stress-strain diagram is linear, or that the

additional stresses caused by the approximation of the body

forces are so small that within that particular range the

stress-strain diagram is linear.

iii) Deformations are small. This does not imply that

the model as a whole has to undergo small deflections, but

rather that the relative deflections of points within

EFGH have to be small.

iv) Except for stress p, faces EH and FG are free of

external loads.

v) Element V is restrained along EF and GH in such

a manner that E and H do not displace and

along EF and GH. This condition satisfies symmetry require-

ments if all influence volumes V are identical and carry

identical loads. F and G do displace due to the elastic

deformation of lines EF and GH.
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vi) The nature of the supports of the structure as a

whole does not affect the error stress field significantly

since

a) the exterral loads Pre balanced by the body

forces so that no edge reactions are required.

b) condition (v) eliminates the effect of re-

straints against edge rotation.

c) small errors are caused if edge EF is not

rigidly restrained at the support.

Since the body forces Y are balanced by the applied load,

equilibrium requires that for unit thickness of element EFGH

2t9Y = - 2bp

-- P (2.7.3)

Lt

Using Timoshenko's Notation (12) , the equilibrium equa-

tions are

+ 0- =ba+ +-%

1 *~ 4(2.7.4)

and the strains will be compatible if

(2.7.5)

The boundary conditions are

(2.7.6)
(2.7.7)

'I&r o a I p IF I (2.7.8)
X ILte . C)

57 '-- 0 (2.7.9)

The solution is simplified considerably by the introduction

of the Airy Stress Function

69 (2.7.10)



The equilibrium equations are identically satisfied and

the compatibility condition (2.7.5) reduces to

A solution to this partial differential equation is

Cos ox [,cosh 0.' +~ C1v, 1;M 01+ C'3 ah &W k.C, 1* J!h 04s

Using (2.7.10):

w A.Cos a.n EcI Cosh ojt + Cl~ 0-11 +A +C34 Co~oh 06- C4j";Vh 14]

Using (2.7.9): + - 0

Using (2.7.6): c1  = 0

c2a + c. -= 0

Using (2.7.7): C4  = ,, t * ' t I 4 C3

To satisfy (2.7.8), a Fourier Series forwry is required.

Using the last three results, and replacing for Y from

equation (2.7.3

3UT FOR %at, I ',YC

•C. - -spivi Lb
e oE s IA* +:.at Ch 4 + a 4t '5;h edt]

All the coeffioients have thus been determined, and sub-

stitution yields

fr . { - f 161h 91 + 0.1cf64&, (X.Cosh at+ iw~tCOS G

(2.7.11)
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_ _ = bY + f {sinh sy + aY cosh sy + dn ay sinh ay An COS ax
p ti n=

n (2.7.12)

PXY f {ay sinh ay + dn (sinh sy + ay cosh ay)I ,n sin ax

2 sin ab (2.7.13
where an Insinh at + at (cosh at +dn sinh at (2.7.14)

with dn at sinh at AND a = - (2.7.15)
sinh at + at cosh at

The results are in non-dimensional form, depending on the

ratios t/9 and b/. It remains to prove that boundary

condition 2.7.9 is satisfied.

The displacement in the y-direction is

V• =1 ( - -- ) d s

vx it n +f(x )

Since and contain sin T  ,~ the series vanishes

on x = + ta - bp Y d] +t I  S'(x)= g x)

Choosing g (x) =0 ensures that v 0 for all y on

x = .Since Iy 0, this also ensures that Z__U = 0

for all values of y on x =--+  . The condition that u = 0

on +  cannot be met since

E)b

u = ("y) dx + f so that xy + ()
E tiE

Choosing f(y) = 0 shows that u is caused by Polsson

effects only This deviation from the original conditions

will be neglected.
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Examples: Equations (2.7.11) to (2.7.13) will now be used

to derive the error stress distribution for

i) t = 9 (shear type structure)

ii) t = 0.1 & (bending type structure)

In each case, three alternate widths of load distribution

are investigated:

b = 0.1 .9, b = 0.25 & and b = 0.50 L

The case b t, is trivial since the series terms in equations

(2.7.11) to (2.7.13) vanish.

2.7.1 Error Stress Field if Height t Equals Halfspan E.

This case is typical of massive structures where earth attrac-

tion forces may be of great importance. It is considered

of interest to determine both the error in strain readings

on the surface, and the distribution of major principal

stress and maximum shear stress throughout the mass. In

order to facilitate similar calculations for other ratios

of t:1, typical examples of the computations are given below.

It will be noted that the first four terms of the series

solution are evaluated with slide rule accuracy. Conver-

gence is good except at C = 0, b = 0.1 , y = t where extra

terms were added.

Table 2.7.1 - The information contained in Table 2.7.1 and

Table 2.7.2 is valid for all values of y.

Table 2.7.2 - The values ofdx, Ty and Txy have been calcu-

lated for y Op 04.t, 0.6t, 0.8t and t, for each of the

three values of b. The major and minor principal stresses

i and T2' the maximum shear stress t and the angle ot

between ei and x were then found from

IL t
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Only the computations for r 0.6t, b = 0.25 L will be shown

here. Values of maximum normal and shear stresses for

other values of y and b:.& can be read off Figs. 2.7.1 to

2.7.3 and Tables in Appendix B. Since

.ivih 0.6 "W 0 cosi 0.6 VWr

equations (2.7.11 to(2.7.13) reduce to

• IS + + 0.6 - 4'A . .*" 0+.6,C oS,

0 - , + 4. 1+, 06"ir)} , 6,, ,, 0 .6',, SiCM

Coefficient of Cos ax
0.6tiv en~iV% 0.6 a* or Sin ax for

1 1.88 1.97 x 10-2 0.1150 0.0850 0.0800

2 3.77 2.05 x 10 - 3 -0.0200 0.0165 0.0161

3 5.67 -1.90 x 10 - 4 +0.0026 -0.0022 -0.0022

4 7.54 0.0 0.0 0.0 0.0

Using the table for aiw!xand os , we find the

following results.
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Table 2.7.3 Typical Calcul.ations for the Error Stress
_____________ Field_ _ _ _ _ _

Coefficient x cos ex

-x n=l n=2 n=3 n=!4 px

0 -0.1150 -0.0200 +0.0026 0 -0.1324
0.125 -0.1060 -0.0141 +0.0010 0 -0.1191
0.25o -0.0810 0 -0.0018 0 -0.0828
0.375 -0.0439 +0.0141 -0.0024 0 -0.0322
0.500 0 +0.0200 0 0 +0.0200
0.625 +0.0439 +0.0141 +0.0024 0 +0.0604
0.750 +0.0810 0 +0.0018 0 +0.0828
0.875 +0.1060 -0.0141 -0.0010 0 +0.0909

1.000 +0.1150 -0.0200 -0.0026 0 +0.0924

Coefficient x cos ex

'In1 n=2 n=3 n=4

0 0.0850 0.0165 -0.0022 0 0.2493
0.125 0.0783 0.0116 -0.0008 0 0.2391
0.250 0.0600 0 +0.0016 0 0.2116
0.375 0.0324 -0.0116 +0.0020 0 0.1728

0.500 0 -0.0165 0 0 0.1335
0.625 -0.0324 -0.0116 -0.0020 0 0.1040

0.750 -0.0600 0 -0.0016 0 0.0884
0.875 -0.0783 0.0116 +0.008 0 0.084).
1.000 -0.0850 0.0165 +0.0022 0 0.0837
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The results of the rest of the computations are summar-

ized in Appendix B, Tables B2 to B6. The major principal and maximum

shear stresses given in Tables .B.2 to .B.6 are presented

graphically in Figures 2.7.3, 2.7.4 and 2.7.5. The variation

of horizontal stress Wx on the lower face is shown in Figure

2.7.6, but the variation of Wx on the upper face (y = 0) ir

so small that no graph has been drawn.

Conclusions

i) The additional stresses introduced into the model

by the replacement of body forces by a surface load are of

the same order of magnitude as the applied stress p, rather

than the total applied load. If a 1:24 mortar model of a

24" thick concrete shell is loaded on a 2" x 2" grid (... t=t),

and fa = fW = 1, fg = 0.6 then from Eqn. 3.6.5 fg = 24

and from Eqn. 2.7.1 the load applied to each influence area

is
Lj = vj Wp (Fg-fg)

.'. Lj = 4 x 120 x 23.4 = 5.42 lb.
12z~

For b = 0.10: p = 135 psi

b = 0.25 2: p = 22 psi

b = 0.50 Z: P = 5 psi

A great reduction in the additional (undesirable) stresses

can thus be achieved by distributing the applied load over

a large percentage of its influence area.

ii) Strain gage readings on the upper face of the

element in Fig. 2.7.2 will not be affected appreciably by

the replacement of body forces bi surface forces ( C,. 1.3%

of p). Strain gage readings on the lower face are affected

considerably ( OY 4C 115% of p). Strain gages should

thus always be mounted on the face opposite to that on

which the load is applied.
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iii) The replacement of body forces by surface

loads may considerably affect the results of ultimate strength

studies of mass concrete or lightly reinforced structures.

The additional tensile stresses may lead to premature crack

formation in the model, or they may cause the model to

crack in places where the prototype will not crack. Figures

2.7.3 to 2.7.5 do, however, show that the influence of the

surface load attenuates rapidly inside the mass, so that a

slight strengthening of the material in the vicinity of the

load point will eliminate the harmful effects. Since the

stress distribution is known, the amount of additional

reinforcment required is readily calculated.

iv) The effect of the body force simulation on

the buckling behavior is not studied since buckling is seldom

a problem in massive structures.

2.7.2 Error Stress Field if Height t = 0.1

times Half-span L. Tr.e loadpoints are spaced

at twenty times the thickness of the element. This is

typical of large span bending-type structures. The horizon-

tal stresses (x on the upper and lower faces of the element

have been calculated from the first four terms of the series

solution, except at x = 0, b = 0.1 & where further terms

were added. The results are given in Table 2.7.5 and are

shown in Figures 2.7.7 and 2.7.8

Conclusions

i) As for the case t = L, the additional stresses

introduced into the model by the replacement of body forces

by a surface load are of the same order of magnitude as the

applied stress p, rather than the total applied load. It

is thus again of advantage to distribute the applied load

over a large percentage of its influence area.

ii) Strain gage readings on both the upper and the

lower face of the element are affected by the replacement

of body forces by surface forces (0(*) max = 30% and 100%
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of the applied stress p respectivey). It is, however,

possible to place the strain gage so that it does not

register the error stress field. The exact position

in this case depends on the ratio b: P, and varies

betwreen the quarter and half points of Z (see Fig. 2.7.8).

iii) If the load is transferred to the model with

a pad, the stiffness of the model is altered locally. This

effect has not been taken into account in the preceding

analysis since, in the case of massive structures, the

relative stiffness of the distribution pad can be made

small.

iv) The effect of the body force simulation on

the buckling behavior has not been studied. For normal

(not massive) structures where this problem would be of

interest,it could be investigated by determining the strain

energy locked up in the error stress field

= (x _ + f dxd y

oft-y )t f E 2 dG d

This could then be compared to the total strain energy

required to buckle the structure. Local snapthrough at

the loadpoint would also have to be investigated.
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Table 2.7.5
Ratio of horizontal to applied stress for t = 0.12

y=O y=t

b=O.10L b=0.25 1 b= 0.5oL b = 0. 1 b=0.251 b=O.50L

0 -0.227 -0.285 -0.236 -1.000 -0.910 -0.660

0.125 -0.148 -0.258 -0.247 -0.535 -0.844 -0.752

0.250 -0.008 -0.171 -0.242 0.119 -0.595 -0.844

0.375 0.055 -0.029 -0.160 0.282 -0.108 -0.603

0.500 0.046 0.120 0 0.101 0.452 0

0.625 0.043 0.198 0.160 0.094 0.744 0.603

0.750 0.057 0.171 0.242 0.213 0.594 0.844

0.875 0.049 o.118 0.247 0.159 0.208 0.752

1.000 0.038 0.045 0.236 0.071 0.006 0.660
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CHAPTER 3

THE TECHNICAL ASPECTS OF THE MODELING OF STEEL STRUCTURES

3.1 SIMILITUDE REQUIREMENTS

We summarize here for convenience the similitude

requirements for the static and dynamic response of struc-
tures loaded beyond their elastic limit. We shall assume

for simplicity that the correlation functions, f, do not

change with position or time as they possibly would in the

general case.

3.1.1 Static Case. In the static case assuming that
we know our prototype material, in this case structural steel,

we must examine the possibility of finding a model material

with similar elasto-plastic behavior. The correlation

functions obtained from a dimensional analysis together

with the compatibility of the material properties of the

model to prototype will determine the design of the model

and the prediction equations from which the prototype

behavior will be extrapolated.

3.1.1.1 Basic Assumptions. In the modeling
technique which is proposed here the modeling materials are

chosen on a rational basis and then investigated to see
how accurately they can predict the prototype behavior as

compared to actual tests. The scope of this modeling technique
will be limited to structures in which the following assump-

tions hold:

(i) The gravity stresses due to the dead

weight of the structure are not important in the study and

if they do become critical, external means will be employed
to satisfy similitude.

(ii) The structural members are essentially
uniaxial so that Poisson's ratio need not be identical in

model and prototype.
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(iii) Boundary conditions and loading will be

duplicated adequately and are not the source of serious

model errors.

(iv) In the static case we assume that there

are no important differences between the temperature of the

model and the prototype, ft = 1; and that the specific heat

of the materials does not enter, thus fc = 1; the coefficient

of linear expansion will not come into play so that f,= 1;

and also, f. = 1 since thermal conduction is no problem.

3.1.1.2 Correlation Functions. In the

static case time is no longer a variable thus we see that

the only relationship which must be satisfied since acceler-

ations are also arbitrary is the stress ratio. If the

model material is known then the stress ratio is determined
from the stress-strain relationship of the model and proto-

type materials. The length scale is chosen arbitrarily.

If body forces come into play, that is gravity stresses

must be modeled, then the relation which must be satisfied

is:

f. = fgfr (3.1.1)

which determines the length scale if a model material is

chosen.

3.1.1.3 Stress-strain Relationship. By
neglecting the effect of time and temperature, we need only

investigate the stress-strain behavior of the materials.
We shall consider the behavior of homologous points in

model and prototype which in most cases will be the most

highly stressed points which are of interest.

We assume further that the stress-

strain relations for a tension specimen will be representa-

tive of all stress-strain relations for compression and shear

connecting all shear strain components to the respective

stress components in the general case. Knowing the stress-

strain relation for the model material chosen one can then

determine the correlation functions which make it compatible

to the prototype material.
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3.1.1.4 The Use of Phosphor Bronze as a

Modeling Material for Structural Steel. The first example
considers the stress-strain relations shown in fig. 3.1.1.
This figure shows the idealized stress-strain relationship
of structural steel and phosphor bronze. The compatibility

requirements for the different ranges of strain follow:

When
o <?6Ey

we have,

Tm = E EM  (3.1.2)

(p = Ep Cp (3.1.3)

Since C m  = E and Tm - f , it follows from

Equation (2.3.10) that

- (m 2JUp (3.1 4)

•0" Em = fo- Ep (3.1.5)

The materials are compatible.

When t

Ym = ym (3.1.6)

6- = Cyp (3.1.7)

It follows from equations (3.1.2), (3.1.3). and (3.1.5)

that

-- --- = fo£

9ypE
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FIG. 3.1.1 IDEALIZED STRESS-STRAIN RELATIONS FOR
STRUCTURAL STEEL AND PHOSPHOR BRONZE.
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It fol2ows from equations (3.1.6) and (3.1.7) that

(!_M= fe-- (3.1.8)

The materials are thus compatible.

When stm < E <Cstp

Ym - ym E'm m - C-stm ) (3.1.9)

O-P = 7p (3.1.10)

Since m & ,, substitution of equation (3.1.8)

into equation (3.1.9) yields

f ( -O ) = E'm (- p -stm) =0
T p 7pm

(3.1.11)

Since FP > 6 stm, this requirement cannot be fulfilled
i.e., the two materials are incompatible at this range.

Therefore we arrive at the conclusion that above E >/ stm

the model stress-strain curve should have zero slope.
This means that both model and prototype material should

strain harden at the same strain. If the plastic deformations
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are not excessive it may still be possible to use this

modeling material up to strains .in the range of Estm
however it is unlikely that the full plasticity of a member

could be developed unless plastic steains of the order of
magnitude of (stp are available. We shall see from actual

tests that the plastic strain range is enough to develop

full plasticity of the member.

3.1.1.5 The Use of Ethyl Cellulose as a

Model Material for Structural Steel. However, if a material
such as ethyl cellulose is used to model steel the stress-

strain relations will be as shown in fig. 3.1.2. Looking

at fig. 3.1.2 and using the results of section 3.1.1.4

we can deduce that for

0 < C '< 6yp ,

E

f Ep -(3.1.12)

p

For

Eyp <C<stp

there is no compatibility unless Em = 0. In other words

for strains beyond 6yp but less -stp the flatter the slope

of Em (the weaker the material used for the model) the

better is the compatibility of prototype and model materials.

However, in all such cases there will be discrepencles in

the model, i.e., the model will be "distorted" and the

degree of distortion will be a direct function Em. In such

cases the model results cannot be expected to be of a quanti-

tative nature if the model is strained beyond the yield

strain of the prototype.

When s ym there will be
a change in the value of ff. It is now given by
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= 04 (3.1 13)
p

IfEy Y < 6st,. then the smaller
the strain hardening modulus of the steel stress-strain
curve the better the correlation. It is unlikely that the
prototype will be able to strain more than the early part
of the strain hardening range at the critical sections
where plastic deformations are taking place before the

structure fails by local or lateral buckling. Thus Eatm

is probably the upper limit of strain to be considered.

It should be apparent from the dis-
cussion and fig. 3.1.2 that the relative distortion in the

model will depend on the positions Of with respect to

E yp The closer these two values are the better the corre-
lation. Also, the closer the values of Eatp and 6stm the
better the correlation.

3.1.2 The Dynamic Case. Our main concern in this
study is the dynamic response of structures on which the

dynamic loads are a result of an air blast.

The similitude requirements covering this phenom-
enon are derived in Chapter 2. Although similitude does not

necessarily impose a stress ratio of unity in the general

case, the phenomenon of the air blast in order to be modeled
with confidence imposes a stress ratio of one, i.e., the

model and the prototype must be tested at the same pressure.
This means that in most cases the dame material must be
used in modil and prototype since the stress-strain relation-
ship for the two materials must be identical. However,
there may be situations where this restriction is not

necessary. If the structure is made of open or frangible
type construction such as bridges, towers, trusses and

frames the main dynamic loading which results is of the
drag type. In such cases the complications resulting from

the reflected overpressures as functions of the angle of
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incidence and the peak overpressure do not arise. It will

be possible then to test the model at a smaller pressure

than the prototype. This means that a weaker material

than the prototype can be used for the model. It is for

such cases that the modeling technique using phosphor bronze

was developed in the study of steel structures.

From the basic relation,

f = f f afr (3.1.14)

in the case of phosphor bronze we have:

f r  r g 1, f
15 2

f = fr-l-f

= 15 x x 1  7.5

This implies that the inertial accelerations

in the model will be 7.5 times those in the prototype.

The result will be a faster rate of strain of the model

material.

3.2 CHOICE OP MATERIALS

The modeling of steel structures is a compara-

tively new phase in model analysis. Whereas in the past

many elastic model studies of steel structures have been

made these were done mainly in plexiglass or some other

easily shaped plastic. Small scale model studies in metal

are therefore relatively scarce in the literature. The

concept of loading the model beyond the elastic range to

predict the ultimate behavior of the prototype and the

other restrictions imposed by similitude requirements in

the study of the dynamic response of structures cannot be

attempted without a clear understanding of the mechanical
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properties of the materials involved. In this section the

materials of both the prototype and the proposed models

will be investigated.

3.2.1 Structural Steel. The mechanical proper-

ties of a material are greatly influenced by its micro-

structure a knowledge of which is very essential in the

choice of a model material which will be compatible with

the prototype. However, we shall leave this realm of

material behavior to the specialists in this newly expand-

ing science and as structural engineers concentrate on the

mechanical properties which are of the most immediate use

to us.

3.2.1.1 Definition of Structural Steel.
Steel is basically an alloy of iron and less than 2% of

carbon by weight. Many other metals can be alloyed with

it to give steels of various characteristics. We shall

be concerned here with structural steels which owe their

strength and other properties chiefly to carbon. According

to the AISC specifications of November 1961, Section 2.2

defines "structural steel" as follows:

"Structural steel shall conform to one of the
following specifications, latest edition:

Steel for Bridges and Buildings, ASTM A7
Structural Steel for Welding, ASTM A373
Structural Steel, ASTM A36"

Table 2.1 summarizes the properties

of the structural carbon steels which we shall attempt to

model.

Of late a new series of steels which

have made their appearance on the market seem to show great

promise in imaginative applications in structures
resulting in more economical designs. These are the high

strength and high strength low alloy steels described in

table 2.2. The methods which we shall propose of modeling

steel structures can be expanded very easily to fit any of

these stools. The stress-strain curves for the steels of
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tables 3.1 and 3.2 are shown in figure 3.2.1. These are

taken from U.S. Steel Co. figures and indicate the minimum

guaranteed yield points. Note that the plastic range of

steel decreases as the yield strength increases. In compar-

ing tables 3.1 and 3.2 note that because the chemical com-

position of structural steels varies with thickness the

mechanical properties such as yield and tensile strength

are about the same for all thicknesses. However, in high

strength steels the chemical composition is the same and

thus the strength properties are a function of the thick-

ness as shown in table 3.2.

3.2.1.2 "Static" Properties of Steel.

The most important mechanical properties of structural steel

can be inferred from a close study of the stress-strain

curve which results when a standard specimen is pulled in

tension at a specified rate of strain. In fig. 3.2.2 we

see such a curve.

(a) shows the whole stress-strain behavior.

(b) a magnification of its early portion will concern

us most and

(c) the idealization of the early portion which is

often made for analysis.

The slope of the elastic portion

of the curve is known as Young's modulus and is often

approximated at 30 x 106 psi. The most important pecul-

iarity of this stress-strain diagram is the distinct yield

point which is almost unique to this material. The upper

yield point 6y u is unstable and the large plastic deforma-
tion which takes place is at a constant value, 6 y1, or the

lower yield point. After a strain of about 1.6% the material

begins to strain harden but does not fracture except after

considerable elongation.

The uniqueness of the yield point

in structural steel can be explained on the basis of its

microstructure. It seems that carbon atoms strain the iron

latice which upon the application of an external stress

100



70,000I

70,000

60,000,

U) ,T 31 inlA44
-a 50,000
b yOver 3/4" tO I /2','ncl. A 4

w 40,000-

~30,000- 'A373
z

20,000- NOTE: MINIMUM YIELD POINTS INDICATED

IN ALL CURVES

10,000

0.2 0.6 1.0 1.4 1.8 2.2
TENSILE STRAIN,e (in/in xI10- 2 )

FIG. 3.2.1 IDEALIZED STRESS -STRAIN CURVES
FOR ASTM STEELS

101



b
U,

w
I-

I3 I

RUPTUR--

oy;.
O'yI

EI

I I
I I

Cy EstSTRAIN,c

b (a) FULL STRESS-STRAIN CURVE FOR STRUCTURAL STEEL.
b

di ELASTIC STRAIN u

w In

cr/1-PLASTIC STRAIN w'
I_

I ir

0,y I
o I y

yEt STRAIN, c 0 e STRAIN,

(b) EARLY PORTION OF STRESS- (C) IDEALIZED EARLY PORTION
STRAIN CURVE

FIG. 3.2.2 TYPICAL STRESS-STRAIN CHARACTERISTICS OF
STRUCTURAL STEEL.

102



field the strains are partly relieved and will cause plastic

yielding at a constant value of stress. This phenomenon is

also observed in other multiphase systems such as phosphor

bronze but not to is pronounced a degree.

The three basic methods of increasing

steel strength are adding alloys, heat treating, and cold

working. Of these, alloying is the basic method of control-

ling the properties of structural steels. The yield point

and the ultimate tensile strength rise with an increase in

the carbon content of steel but a loss in ductility and

weldability accompanies these strength gains. This is why

carbon content in structural steels is usually limited to

0.28%, the specified maximum for A373, A36 and A44O. A7

steel is unique among ASTM-specified structural stools in

having no specified limit on carbon content. Manganese

and silicon, the most important alloying elements apart from

carbon, also increase yield and ultimate tensile strength

with a smaller relative loss in ductility and weldability

for a given percentage of element added. Copper and nickel

are the principal alloying elements used to Improve the

corrosion resistance of high strength steels. It should

be pointed out that all the high-strength structural steels

resist atmospheric corrosion better than carbon steels.

3.2.1.3 Dynamic Properties of Steel.

Experimental evidence indicates that the strength behavior

of most materials depends among other things on the rate

of strain during testing. In steel these changes are shown

in fig. 3.2.3 for the case of ASTM A-7 structural steel.

The effects of increasing rate of

strain can be sumarized as follows, looking at fig. 3.2.3:

1. The yield stress increases to some dynamic value, 661 .

2. The yield point strain Ey increases.

3. E, the modulus of elasticity, in the elastic range

remains constant.
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4. The strain at which strain hardening begins, Est

also increases.

5. The ultimate strength increases slightly.

The most important effect which will influence the design

of steel structures to resist dynamic loads, is the increase

in the yield stress. In fig. 3.2.4 the percentage increase

is yield stress is given as a function of the rate of strain

for two steels of different static yield stress. It is

evident from the figure that the increase in dynamic yield

point is greater for steels with lower static yield points

as is shown by the higher slopes of curve A. Figure 3.2.5

shows the dynamic yield stress as a function of the time

required to reach that value of stress (t yp) for ASTM A7

steel. From this curve values of design yield stress could

be found knowing the time to reach yield stress in a particu-

lar structure.

3.2.2 The Copper Base Alloys as Model Materials.

Our first investigation in the possibility of finding an

appropriate model material which could be used to model steel

structures is the family of metals known as the copper

base alloys. The similitude requirements for the case of

blast loads acting on structures indicate that if the sur-

face loads must be kept the same, which may be the case in

some structures such as shells and other non-uniform sur-

faces, then the same material must be used for model and

prototype since strain must be equal also. However, in

many structures made of thin exposed members or frangible

sidings it is the drag forces which are important and

therefore in testing models of such structures it is possible

to use lower pressures than in the prototype. This makes it

possible to use a large number of materials which have less

strength than steel but still compatible to its stress-

strain diagram. It is for this class of problems of welded

construction in steel for which the modeling technique

described in subsequent sections was developed.
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3.2.2.1 Properties. Alloys having copper as

a base are on the whole the most readily machinable metals

and the ease with which they can be milled into various

shapes may be of great advantage in model making. In addi-

tion the ease of Jointing them by the relatively simple

process of silver soldering adds greatly to their favor in

cases where welded structures are to be investigated or

where a large number of parts must be assembled. An exam-

ination of the stress-strain properties of most of these

alloys indicates that a distinct yield point as in the

case of structural steel does not exist. However, in two

commerical alloys namely phosphor bronze and silver nickel

a definite yield point can be established after annealing.

The important difference, however,,is that the plastic yield-

ing in these materials is not as pronounced as in steel.

3.2.2.2. Phosphor Bronze. Of the two commer-

cially available copper base alloys that could be investi-

gated as possible substitutes to steel in model making,

phosphor bronze is chosen on the basis of lower cost and

better machinability. The "free cutting" phosphor bronze

which is investigated contains 4% lead (added to improve

machinability), 4% tin, 4% zinc and 88% copper.

To obtain a definite yield point

in phosphor bronze a cold drawn specimen must be carefully

annealed to control the crystal size. The percent cold

work or the amount of reduction in cross-sectional area

during the rolling process must be between 50% and 75%.

In the case of 50% cold worked samples stress-strain curves

from strips indicate an optimum annealing temperature of

6750 C for one half hour. The effect of cold work on the yield

stress of phosphor bronze is shown in fig. 3.2.6 and the

effect of annealing temperature in fig. 3.2.7.

These curves were established by

annealing 1/4 inch rods of two hardnesses (50% and 75%)

at various temperatures for one half hour. The composition
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of the phosphor bronze was that described above. The

stresses quoted in fig. 3.2.7 as "yield stresses" are

actually the stresses at which the load was observed to re-

main approximately constant during the test. It is inter-

esting to note that the annealing has a greater influence

in lowering the yield stress in samples of larger cold work.

This may be due to the fact that in this case the crystals

are left more distorted and strained by the rolling proc-

esses.

3.2.2.2.1 Static Stress-Strain Relations.

The stress-strain properties of phosphor bronze are not readily
available in the literature. It becomes necessary then

to test actual strips the size of the flanges of the wide

flange model beams which were machined for the various tests.

Fig. 3.2.8 shows the dimensions of the test strips and

the precautions taken at the end to prevent failure at

the ends by the jaw grips of the testing machine. The

tests are made on the constant rate of strain "Ingtrom"

type of machine of the Plastics Research Lab. at M.I.T.

A gage length of 2 inches was used and externally controlled
to define the points on the stress-strain diagram. This is

a definite improvement over other constant rate of strain

machines where strain is measured from the jaw travel of

the machine. Two important errors arise from tets of this

type. First, there may be slippage in the jaws which

cannot be accounted for on the usual plot which the machine
gives as output and, second, if the whole length of the spec-

imen between the two jaws is used as a gage length there

will be errors because of the stress distortions at the ends

of the specimen. A uniform stress field will exist only

in the centeral portion of the specimen which is the region

far enough from the ends to allow this uniform field to

develop.

The material from which the

strips are cut has a cold work hardness of 50%. It is then

annealed for one half hour at various temperatures &ad then

tested. The results of three tests at a strain rate of
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i x i0.5 in/in/sec are shown in figures 3.2.9, 3.2.10, and

3.7.11. These results indicate that the optimum annealing

temperature is 675*C for the time interval chosen. This

is therefore adopted for all the model specimens.

A comparison of the stress-

strain properties of phosphor bronze with ASTM A7 steel is

made tn fig. 3.2.12. We see from the two curves that

yielding takes place at about the same strain. This is very

important in model studies since a strain ratio of unity

will not result in distorted models. However, we notice that

although phosphor bronze shows some plastic yield at constant

stress it does not possess the uniquely large plastic range

of structural steel. Strain hardening begins much earlier

in phosphor bronze than in steel so that at very large

strains the two materials are not fully compatible. More

will be said about this point when actual test results are

discussed.

3.2.2.2.2 Dynamic Stress-strain Relations.

Strips of the same dimensions as in fig. 3.2.8 are strained

at various rates of strain to see how the yield point is af-

fected. These specimens are also annealed at 6750 C for one

half hour and then pulled to failure at the rates indicated

in fig. 3.2.13. The yield point definitely increases with

increasing rate of-strain in this material. Fig. 3.2.14

shows the effect of the strain rate on the yield point

stress of phosphor bronze. Knowing the rate of strain of

the model we can estimate the yield stress of the criti-

cally stressed points where plastic deformations will

take place. The comparison is made in fig. 3.2.14 between

structural steel and phosphor bronze yield stresses as

affected by strain rate. It can be seen that in steel the

effect is more pronounced, but since the rates of strain

used are of a different range no definite conclusions can

be drawn.

3.2.3 Using Plastics to Model Steel Structures.

The possibility of using plastics as a model material for

the structural elements of steel is also investigated. It
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is observed that most of the plastics are characterised by

a non-linear stress-strain relationship throughout the entire

range of loading, low initial modulus of elasticity, lack

of ductility and a marked degree of creep. Most plastics,

in general, provide a considerable contrast to the mechani-

cal properties of structural steel. However, unlike other

plastics, ethyl cellulose, a thermo-plastic material, has

a remarkably similar stress-strain curve to that of struc-

tural steel (ASTM A7).

3.2.3.1 Properties of Ethyl Cellulose.

Ethyl Cellulose, an ethyl ether of cellulose, is a thermo-

plastic material. Its chief characteristics are high

impact strength, toughness and a considerable degree of

ductility. Fluctuations in its dimensions due to normal

changes in temperatures and effect of humidity are quite

small. In spite of its application in various electric

appliances, radio housings, tooth-brushes and other indus-

tries, its manufacturers are relatively very few.

Tests on standard specimens of

ethyl cellulose subjected to standard rates of strain

gave the average stress-strain curve, as shown in fig. 3.2.15.

On idealising such a stress-strain relationship, the salient

points are:

Modulus of Elasticity = 0.184 x 106 psi

Yield Stress 4 .15 x 103 psi

Strain at Yield Stress 0.0225 in/in

Ultimate Strain = 0.172 in/in

The specific gravity of ethyl

cellulose is 1.10. A comparison of the idealized stress-

strain curve of ethyl cellulose is made to that of steel

in fig. 3.2.16.

3.3 MODEL MANUFACTURE

The choice of the materials from which the model

is made according to similitude requirements is the most
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important step in the structural model analysis. The

second most important aspect is the actual process of making

the model. During this step many considerations must be

evaluated before an efficient modeling technique can evolve.

In this section some of the considerations on which the

decisions of the analyst depend will be examined. Also

the details of the modeling technique for steel structures

will be described.

3.3.1 Some Considerations in Model Making. When

small scale models ak e to be built the accuracy of the

dimensions must be very high. The difficulty of achieving

this increases as the scale of length decreases. At some

point it may become very hard or even impossible to get

good results from a small scale model. The accuracy to be

achieved in the model also depends on the results required

from the model and the time and funds available for the

model study. If the model is to be used to predict the

ultimate behavior of the prototype, then boundary conditions

and other details, such as joints, also become important.

If time and money were not limited then the model could be

refined to any degree with increasing chances of giving

more accurate results provided of course that similitude

requirements are satisfied.

It may also be possible to use many alternate

materials for the model especially in cases where elastic

behavior is to be considered. Some materials are much easier

to work with than others so a careful consideration of all

available methods may save considerable amount of time and

effort. Since in general model studies are on the high side

with respect to time consumption, any effort on the part

of the analyst to minimize this is highly advantageous.

3.3.2 Specific Examples of Modeling. We shall consider
here some examples of modeling of steel structures in which

plastic behavior during the dynamic response is of primary

concern. Tests on actual full scale structures and struc-

tural elements afford an excellent opportunity for comparisons
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with extrapolations from model studies. So far little has

been done in the study of the dynamic response of actual

full scale structures or structural elements although some

model studies have been reported. 26 )' The case of static

loads has received more attention and a host of data from

actual full scale structures and structural elements in
steel have been reported by many investigators especially

the Lehigh University group.(22,2 5 ,37,4 1 ,4 6 ) Before a

modeling technique can be generplized as an efficient

solution to a class of structural problems, correlation tests

must be made to prove its accuracy in predicting the behavior

of the prototype. Comparisons are thus made with actual

tests on prototype, not with analytical solutions, since

the aim of the model study is to bypass these. At any rate

the behavior of the real structure will not be the same

as the analytical solution would indicate and will be closer

to the model prediction depending on the relative accuracy

of the basic assumptions made in each case.

3.3.2.1 Phosphor Bronze Models. A decisive

advantage of using this material is its ease of handling.

Machining operations, fitting and especially jointing are

easily performed by the inexperienced analyst. It should

be remembered, however, that a modeling technique is by

nature specific in that one attempts to solve the immediate

problems of the structure to be modeled. In some cases

the method may be easily applied. To other problems it

may not. Keeping this in mind then, we realize that the

phosphor bronze modeling technique of making models of

steel structures is not claimed to be the best nor the most

general.

3.3.2.1.1 Machining the Shapes. Assuming

that most structures will be designed from existing rolled

sections and not be predominantly built up, although occasion

may require some such sections, we shall try to duplicate

through machining the rolled sections in smaller scales.

For convenience one section is chosen for duplication of

some of the Lehigh tests. The section used mostly there
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is the 8WF40 which is shown in fig. 3.3.1(a). A scale of

1:15 is chosen as the basis ot being the smallest practical

scale on which the technique would be evolved and also

a scale in which the joints and boundary conditions could

be duplicated faithfully. In order to facilitate machining

and to cut down on the cost the exact dimensions to 1:15

scale were modified as shown in fig. 3.3.1(c), assuming

that corrections could be applied to the results to over-

come the geometric discrepencies. Machining of the sections

was done in 30 inch pieces from j inch square stock by the

Chicago firm of Milled Shapes Inc. The tolerances are less

than +.005" on any dimension. Machining always tends to

warp thin sections and the machined phosphor bronze pieces

as received showed some signs of warpage but this was not

excessive. Another consideration in the choice of the

length scale of 1:15 was the maximum capacity of the dynamic

loading machine of 4 kips and the size of portal frame which

could be handled by the machine dimensions with comparative

ease.

3.3.2.1.2 Annealing of Phosphor Bronze.

The annealing of the machined shapes is carried out before

the components are assembled. The optimum annealing temper-

ature of this material is found to be 6750C for one half

hour, from the stress-strain curves on thin strips. Since

the annealing temperature and the time of annealing strongly

influence the yield point stress in phosphor bronze, it is

necessary to find a silver solder with a lower flowing

temperature than 675 0C to prevent double annealing upon

assembly of the parts. During annealing there may be

variations in the temperature and this must be guarded

against since only a short time interval is used.

3.3.2.1.3 Silver Soldering. The biggest

single advantage of using phosphor bronze in model making

is the ease with which strong accurate joints can be made.

It is this advantage that prompted the use of this material

in the small scale modeling of steel structures although

123



8.077"1

I .558

.36 5"
B',c6

-I .558"

(a) 8 WF 40 (NOMINAL)

.500"4 .538"

.030" r-1 037"0E f .037"--24g
0030

(c) APPROXIMATE SECTION (C
(PHOSPHOR BRONZE) (b) 8 WF 40 (1/15SCALE)

FIG. 3.3.1 THE SECTIONS OF THE PROTOTYPE AND MODEL
STRUCTURES INVESTIGATED.

124j



as seen from the stress-strain curves the compatibility of

the two materials does not extend over the whole strain

range. If the method proves satisfactory then small scale

model studies for shock tube tests where size is an impor-

tant consideration could be made of structures in the

1/15 - 1/30 scale range very easily. The problems presented

by welding of steel sections at these scales are beyond the

capabilities of the average models laboratory. Special

equipment must be available which may hinder the making of

small scale models of welded steel structures. In fact

is is highly improbable that a normal size weld as used

in steel structures could be modeled at such small scales.

As shown by fig. 3.3.2 the

process of silver soldering is extremely simple with a minimum

of equipment necessary. All that is required is a gas

torch, silver solder wire and a borax flux. The technique

can be very easily adopted by technicians and the joints

can be done with excellent control as to thickness of weld.

The accuracy to be maintained in silver soldering is high

even for a scale of 1:15 as shown by fig. 3.3.3 where the

stiffeners which go into the wide flange beams are shown

before its assembly and below it is a finished beam ready

for instrumentation and subsequent testing.

It is important in the assembly

to make the joints as quickly as possible so that over-

heating of the member in the vicinity of the weld will

be avoided and the material will not be weakened. The

annealing temperature of the models is 675 0 C and the flow-

ing temperature of the silver solder used was 628*C so that

we see that if excessive overheating occurs it could affect

the strength of the model at the local point of soldering.

3.3.2.2 Fabrication of Ethyl Cellulose Models.

it is, a simple process to bond ethyl cellulose to itself.

The following considerations are necessary for a good bond:

i) Design and Fabrication
ii) Selection of Adhesive
iii)Application and Assembly Technique
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FIG. 3.3.2 EQUIPMENT NEEDED FOR SILVER SOLDERING

FIG. 3.3.3 PARTS WHICH GO INTO THE MAKING OF A SIMPLE
WIDE FLANGE BEAM SCALE 1/15.
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i) Design and Fabrication: Strength and dactility

are important factors in the design of joints. The tensile

strength of adhesive bond is slightly lower than that of

ethyl cellulose. Therefore, it is necessary to increase

the bonding area in order that the joint will be as strong

as the molded part of the material. This can be done either

by thickening the wall section around a butt joint or by

using a special type of joint. Surface contamination or

poor contact of mating surfaces should be avoided in order

to obtain good bond.

ii) Selection of Adhesive: There are three available

adhesives especially suited for Ethyl Cellulose. They

are known commercially as P-34, P-34A and P-35*. These are

all the solvents for the material. The first two adhesives

have the composition of Alcohol and Toulene in different

proportions. The last one is essentially Ethylene Dichloride.

iii) Application and Assembly Techniques: Stronger

bonds result when the adhesive is applied to both pieces of

an assembly rather than to only one of the mating surfaces.

This can be explained by considering that, when only one

piece is coated, the solvent first softens the coated plastic

and then begins to thicken before the non-coated piece is

pressed against it. Thus the solvent does not have as great

a chance to soften the second piece and usually a weaker

bond results.

The adhesive itself may be applied by

various methods, such as saturated felt pad, flow gun,

dripping or brush. High vapor concentrations of the adhesives

should not be inhaled. Good ventilation at the place of

fabrication is desirable, therefore.

3.4 TESTING APPARATUS AND INSTRUMENTATION

To test the small scale models made from phosphor bronze

Dealer - Dow Chemical Co., Midland, Michigan.
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special loading and supporting devices are needed. The static

tests are performed in the Models Laboratory of the Civil

Engineering Department of M.I.T. where a special lever

mechanism is available. The dynamic tests are performed

with the aid of the impulsive loading machine of the Soil

Mechanics Division of the same department. A description of

this apparatus and the instrumentation used in the model

tests is given below.

3.4.1 Loading Frame for Static Tests. The loading

frame for carrying out static tests shown in fig. 3.4.1

has a maximum capacity of 5 kips concentrated load. At

the lower bound any small load of a few pounds only could be

applied since the friction in the system was found to be

very small. The frame is basically a beam pivoted at one

end through a roller bearing passing through its center of

gravity as shown in the detail of fig. 3.4.1. The load is

applied in increments at the furthest extremity from the

fulcrum and the model is positioned at any point in between

the fulcrum and the point of load application. By varying

the position of the model from the fulcrum a variety of

multiplication factors can be achieved for the applied load.

As point B in fig. 3.4.1 approaches A the multiplication
factor increases with a practical maximum of about 10 for

this setup.

Since most of the structures to be tested are

of a planar nature a rectangular box made of aluminum plates

is used to support the small scale models in one plane.

Fig. 3.4.2 shows the dimensions of the box and the method

of supporting of portal frames which are tested to ultimate

failure. Thin brass wires of 1/16" diameter are used for

lateral supports of beams and frames to allow the model to

reach its full plastic moment. It should be noted that the

prototype structures which were modeled are also supported

laterally but of course the details vary in model and

prototype since size limitations do not allow in many cases

the reproduction of details in exactly the same way. In
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Fig. 3.4.3 a simply supported model beam is being tested

in the above mentioned box. Note the lateral supports

given by the brass wires.

3.4.1.1 Method of Load Application on Models.

Loads on beams and frames were applied through small brass

bearing plates placed on the top flange. At points of

load application stiffeners were provided. Fig. 3.4.3

shows a close up of the loading and supporting arrangement
for a simply supported beam. The concentrated single

load of the loading frame is distributed to two or more

points by small stiff beams as shown in figs. 3.4.4 and 3.4.5.

The method of load application is the same for some of the

prototype tests. However, in cases where the load was

applied through the web of the beam an exact reproduction

on the model was not attempted and all loads are applied

through bearing plates on the top flange. Since the load

increments are applied by hand at the end of the beam the

load variation with time is a step variation rather than
a smooth one. Unloading of the specimen during testing is

avoided as much as possible especially after the model

passes its elastic limit.

3.4.1.2 Deflection Measurements. All deflection
measurements for the static tests are taken with Ames

dial gages with an accuracy of 0.001 inch. Usually the

mid-span deflection is of particular interest in the test

but in some cases curvatures are computed from deflection

measurements. Figs. 3.47 and 3.48 show the mode of deflec-

tion measurements for different model tests. Since the

scale of these tests is 1:15 the deflection readings on

the model are 1/15 of those of the prototype. The gages

used are of sufficient accuracy to allow good extrapolation

to the prototype.

3.4.1.3 Strain Measurements. Strain measurements
are made by means of SR-4 foil type strain gages with an

epoxy backing. Readings are taken with a Baldwin-Lima-

Hamilton Strain Indicator. A typical test setup is shown

in Fig. 3.4.6.
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FIG. 3.4.3 CLOSEUP OF FRAME SHOWING MODEL BEAM READY FOR TEST

FIG. 3.4.4 CLOSEUP VIEW OF THE LOAD APPLICATION AND THE
SUPPORT OF A SIMPLY SUPPORTED MODEL BEAM
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FIG. 3.4.5 PORTAL FRAME IN POSITION TO BE TESTED. NOTE
THE LOAD APPLICATION AND SUPPORT DETAILS.

FIG. 3.4.6 CLOSEUP OF SUPPORTING BOX SHOWING THE LATERAL
SUPPORTS FOR A PORTAL FRAME, THE METHOD OF
LOAD APPLICATION AND THE STRAIN INDICATOR.
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FIG. 3.4.7 CLOSEUP OF LOADING FRAME SHOWING A PORTAL
FRAME READY FOR TEST. NOTE LATERAL SUPPORTS.

FIG. 3.4.8 DEFLECTION MEASUREMENTS OF JOINT TEST WITH
AN AMES DIAL.

134



The foil gages used varied in length

from 3/16" to 1" and are bonded with EPY-150 cement

according to the recommended procedure of the manufacturer.

This cement is chosen for its relatively fast cure. However,

from observations it appears that some of the gages began

to creep at strains much less than the maximum range of

about 1%. This is thought to be caused by failure of the

bond between the gage and the model material and measurements

on such gages should be taken only after the creeping has

ceased. Whereas the metal material responds quickly to an

increment of stress, the same is not true of the epoxy

which is a thermo setting plastic. When enough time is

allowed for creep to occur the strain measurements give

better results.

The gages are temperature compensated

for 1018 Steel but since these are used with phosphor bronze

with a different coefficient of expansion a dummy gage is

used in all the tests.

3.4.2 The Dynamic Loading Machine. The machine used

to test the model structures is one built for high speed

triaxial tests of soil samples. Fig. 3.4.9 shows a drawing

of the machine and Fig. 3.4.10 shows its mode of operation

in a schematic form. Since the system had no feedback control

on the load rate, the obtained load time curve is the result

of interaction between the specimens and the machine and

as such the applied load is an impact rather than a predeter-

mined impulse.

Loads up to 5 kips are obtained with this

machine and load rise times ranging from 3 milliseconds up.

3.4.2.1 Support Frame. A simple braced frame

was built to hold the specimens to be tested. Fig. 3.4.11

shows the frame with a model phosphor bronze portal frame

ready to be tested. The support trame is clamped to the

platform of the machine during the test.
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3.4.2.2 The Load Cell. The load cell is attached

to the ram and the load applied to the model through it. It

consisted of a j inch diameter aluminum shaft, 2 inches

long onto which are bonded two strain gages ( Baldwin-Lima-

Hamilton Type C7). The gages are laid along diametrically

opposed generators of the cylindrical shaft and wired to

form two opposite arms of a Wheatstone bridge. The other

two arms of the bridge consisted of two dummy gages attached

inside an unloaded aluminum box. This system caused the por-

tions of strains due to bending to cancel each other out and

the bridge output voltage to be proportional to the axial

load in the load cell. The circuit is excited by a 221

volt battery and the output signal displayed on a cathode

ray oscillograph.

3.4.2.3 Recording Equipment. The oscillograph

as shown in Fig. 3.4.12 is a Tektronics Type 502 which had

a calibrated time sweep and could be triggered by the load

signal itself. Permanent records are obtained by using

Dumont Type 287 oscillograph record cameras operating with

Polaroid-land film.

A Twin Vise Model 60-1300 Sanborn Recorder

is used during calibration of the load cell.

The load cell is calibrated in a standard

beam type testing machine, the output signal being recorded

on a Sanborn unit. The signal due to a known load is com-

pared to the signal due to a fixed unbalance in a Wheatstone

bridge. After each test the signal due to this fixed unbal-

ance would be recorded giving a load scale for the data

obtained.

The deflections are measured with a Linear

Variable Differential Transformer (L.V.D.T), the signal is

converted to D.C. and displayed on the Oscillograph. Thus

two signals are recorded with time on the same picture. For

any time during the response the load deflection relation

would be obtained.
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FIG. 3.4.11 SUPPORTING FRAME FOR MODEL FRAMES. NOTE THE
L.V.D.T. FOR THE DEFLECTION MEASUREMENTS.

FIG. 3.4.12 SETUP SHOWING THE DYNAMIC LOADING MACHINE

AT THE LEFT AND INSTRUMENTATION.
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The L.V.D.T. is calibrated with an Ames

dial and a plot of signal v.s. deflection is obtained for

every test. From this plot the deflections for the response

signal recorded by the camera could be obtained.
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CHAPT9R 4

PHOSPHOR BRONZE MODEL STUDIES OF WELDED STEEL STRUCTURES

Tests were made on wide flange beams, portal frames,

and connections for the static loads, and portal frames

in the case of dynamic loads. In all these tests a scale

of 1:15 was used for convenience and the section used

closely approximates an 8WF40 rolled section. In the

static tests comparisons are made between the model predic-

tions and the actual prototype tests but in the dynamic

case no prototype results were available.

4.1 STATIC TESTS ON MODELS BEYOND THE ELASTIC LIMIT

4.1.1 Wide Flange Beams. A series of seven tests

were performed on wide flange beams with simple supports

and fixed ends from which load deflection and moment curva-

ture relations were obtained. The test results of the

model beams are summarized in table 4.1. Using the full

scale results of tests performed at Lehigh University the
predicted behavior of the prototype from the model test is

compared.

4.1.1.1 Prototype Tests. The simply supported
wide flange beams are of two different types. The differ-

ence is in both length and mode of loading as shown in

Figs. 4.1.1 and 4.1.2.

The "pilot" tests were made on an 8WF440
beam of 12-ft. span, simply supported and loaded at the

third points. The load was applied to the beam through
bearing blocks resting on the top flange and the web was

stiffened under the load with 3/8 in. plates welded per-
pendicular to the web. From this test it was observed that
a non-linear strain variation exists at the mid-span after
the elastic limit was exceeded. This caused the neutral
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axis to move towards the tension flange but at higher per

cent strains it moved back towards the centroidal axis.

The pilot test developed less plastic strength than that

calculated.

The "regular" tests were made on 8WF40

beams of 14-ft. span simply supported and loaded at the

third points. One test was done on the beam in the as

delivered condition and the other was stress-relief an-

nealed prior to testing. The method of load application

was made to simulate a beam-to-girder connection by bring-

ing the load directly onto the web. This method of load

application could not be duplicated in the model tests
without undue loss of time. Thus the method of load appli-

cation in all the model tests was done through bearing

blocks on the top flange as shown in Fig. 4.1.3. The beams
were laterally braced to prevent lateral bucking upon passing

of the elastic limit.

Prom the results of these simply supported

beams the agreement between the theoretical and experimental

results was better for the annealed beam in the "regular"

teat. The "pilot" beams were not annealed nor laterally

supported and also loaded on the top flange through bearing

blocks. These may be the causesof the lower than predicted

moment of the pilot tests. Annealing although lowering the

residual stresses considerably also lowered the yield stress

and thus the strength of the annealed specimens was less.

It is concluded from the test results that the moment curva-

ture curves for structural steel beams, laterally supported,

can be predicted from the stress-strain tensile test curves

and the usual theory of plastic bending based on the assump-

tions of a linear strain variation across the section and a

uniform distribution of yield.

The prototype for the continuous beams
were also of14-t. span. However, the "fixity" in these tests

results from the 2 side spans of 7-ft. each of a 3 span

continuous beam. The central span of 14-ft is considered

fixed ended. Two types of tests are reported from the



Lehigh series on continuous beams.(4 5 ) One has the reaction

applied to the flange through a bearing plate and the other

the reaction is transmitted to the web by a beam to column

simulated connection. The test results indicate that the

latter support detail has more stiffness and thus the beam

mobilized higher loads.

4.1.1.2 The Model Tests. The models of the simply

supported beams were of 1:15 scale and are soown in Figs.

4.1.3 and 4.1. 4. The cross-sectional geometry was only
approximately scaled, however, due to machining difficulties

(see Appendix C). The phosphor bronze sections machined

from square stock were first annealed as described earlier

and then assembled. Fig. 4.1.5 shows a beam before testing
and below it a failed simply supported beam, failure due to

excessive deflection. In beam tests Bl to B5 only centerline
deflections were recorded with load increase. Beams BIA and

BIB were instrumented with strain gages at the mid-span

section and also in BlB deflections were measured at 2 other

points so that moment curvature relations could be established

from the model test. The position of the strain gages is shown

in Fig. 4.1.3. The beams BlA and BB are shown in Fig. 4.1.6

after failure. Beam B2 and B3 are shown in Fig. 4.1.7.

For the fixed ended beams B4 and B5 the

fixity was achieved in the model by silver soldering the

ends to a tube in the case of B4 and pouring molten lead

in a similar tube in the case of beam B5. The ends were then

fastened to the supports with two screws on each support.

The detail of the model "fixed" support is shown in Fig. 4.1.12.

The fixed ended model beams are shown after failure in

Fig. 4.1.8.
4.1.1.3 Test Results. The results of the model

beams repr.esenting the "pilot" test of the prototype are

given in Tables 4.2, 4.3, and 4.4. These are for model beams

Bl, BIA and BIB respectively. The explanations following each

of these tables gives the procedure followed in obtaining the

numerical values in each column. Tables 4.5 and 4.6 give the

test results of model beams B2 and B3 and Tables 4.7 and 4.8

give the results on the"fixed" end model beams B4 and B5.
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FIG. 4.1.3 MODEL BEAM OF THE "PILOT" PROTOTYPE TEST
AT 1:15 SCALE.
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FIG. 4.1.4 MODEL BEAM OF THE" REGULAR" PROTOTYPE TEST
AT 1:15 SCALE.



.............

FIG. 4.1.5 MODEL BEAM BI AFTER FAILURE. SCALE 1:15:
MATERIAL, PHOSPHOR BRONZE.

BlA

BIB

FIG. 4.1.6 MODEL BEAMS BIA AND BIB AFTER FAILURE. NOTE
THE STRAIN GAGES AT THE CRITICAL SECTION.
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FIG. 4.1.7 SIMPLY SUPPORTED MODEL BEAM 1:15 SCALE
AFTER FAILURhE.

FIG. 4.1.8 FIXED ENDED MODEL BEAM AFTER FAILURE.
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Comparison of these results with the prototype

tests is given in Fig. 4.1.9 for the "pilot" test or the

8WF40 simply supported beam of 12-ft. span. This figure shows

the M-0 curves obtained from strain gage readings and also

deflection readings in the case of beam BIB.

Fig. 4.1.10 is a load deflection curve for the

predicted behavior of the prototype from 3 model tests. This

shows the method that could be used to predict ultimate

failure loads in more complicated structures from a few model

tests. From this figure the predicted failure load is

conservatively picked at 56 kips. Backfiguring the ultimate

moment of Fig. 4.1.9 (the load deflection curve is not given

by Luxion et al.)(2 5 ) we get a value of 52 kips for the

ultimate load.

Fig. 4.1.11 shows the load deflection curves

from model beams B2 and B3 together with the prototype

results.

Fig. 4.1.12 shows the load deflection pre-

diction curves from model tests B4 and B5 as compared to

two prototype tests of different boundary conditions.

4.1.1.4 Conclusions from the Model Comparisons.

From the few tests which are reported herein a number of

conclusions could be drawn concerning the correlation of

model predictions and actual prototype tests.

1. It is obvious from all the load deflection and

the moment curvature plots that the model material strain

hardens at earlier values of strain than steel. This was

anticipated and the tests verify it. However, as shown

by Figs. 4.1.11 and 4.1.12 the ultimate loads on these beams

could have been predicted within the accuracy required for

design purposes.

2. The results of the two simply supported model

beams B2 and B3 which modeled the "regular" tests of 14-ft.

spans indicate that the model results approach closer the

annealed 8WF40 beam rather than that as delivered as shown

by the values of Table 4.1. The failure criterion chosen

for the beams is of excessive deflections due to bending

deformations.
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TABLE 4.2 TEST RESULTS FOR MODEL BEAM Bl

Total Load Predicted- Predicted

Load at Mid-Span 2P Prototype Prototype

End of Beam Deflection on Model Load Deflection

(Lbs.) (inches) (Lbs.) (Kips) (inches)

1 .004 5.92 3.88 .06

2 .006 11.84 7.74 .09

3 .008 17.76 11.6 .12

4 .01 23.68 15.5 .15

5 .013 29.60 19.3 .195

6 -- -

7 .019 41.4 27.0 .285

8 .0215 47.36 30.9 .324e

9 .024 .53.28 34.8 .36

10 .028 59.20 37.4 .42

11 .031 65.12 42.8 .465

12 .035 71.04 46.4 .525

13 .0395 76.96 50.2 .593

14 .046 82.88 54.0 .69

15 .069 88.80 57.7 1.035

16 .148 94.72 61.8 2.22

17 .267 100.64 65.5 4.00

18 .329 106.56 69.4 4.94
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Explanation of Table .2.

Col. 1 gives the load increments on the beam of the load-

ing frame.

Col. 2 is the midspan deflection read on the Ames dial.

Col. 3 gives the total load on the model beam or the

sum of the 2 third point concentrated loads. Col. 3 gives the

values of Col. 1 times 5.92, the ratio of lengths on the

beam or the load multiplication factor of the loading frame.

Col. 4 is the predicted load of the prototype. It is

obtained from the following relation:

Pp = Pm x fr 2 x f a x (G.F.) (4.1.1)

where

fr is the length scale

ff. is the ratio of stresses

G.F. is a geometric factor to account for the

difference in moment of inertia as explained in Appendix C,

f r "2 x fW"I x G.F. = (15)2 x 2 x 1.45 = 652

P = .652 P (kips) (4.1.2)

Ccl. 5 gives the predicted defection at mid span of the

prototype. The values are obtained from the expression:

U Umfr (413)

where

Up is a vector displacement in the prototype.

Um is a vector displacement at the same point and

direction in the model.

fr is the length scale which is 1/15 in this case.

155



,a419 n. H (Y)m"4 tX %D (-~ m m 0 H N N en'
0 0 0 4 44 HH-4

-,O I *xX o a 0' m t- 1 - %D .0 in 'IA\LC N N N H- 0 0
'00 loo a r4 Nfn :t \ -0 -~ M CY0 H- N n -:tU\ ,o -

4 4.) 0 ~410 M" '0 0 '. H4 X 0 :: 0 U\ 0y'. '- o N IA~ r- 0 0
a 430C 00 H H4 N N\ rnr AoC 0 0 0 t\

0
V

co0J~ 0 0 ,*

* 04)~-

E-ELO4 E-

00cco40 0 00 H H H N N N*" "0 ~ ~ ~ ~ ~ ~ ~ ~ ~ J C- -4CJ e A l - m m cl 0 0'
z0

1

4
HI U0 N ("4 CM U'- '0 C 0 H- I- r\ 0j cA '0 C-

0 4 0 0H H H HH 4r4r \ Cj(IC\( n ' l V

z0

01 0



cc 0-4 r4 -t o -. - r-4N tO~ - H 4en . 43 0 00 0 o0-t D0 ~ r

0 c

C~ 0ii jj3: M, r'o t- (n 4 o (\ oLr C v' ' N

.4 W-4 OOOOOOOO 00 0 00 0 00 r.
0 c- 0 000 00 0 000 0 000 0

C) "-I * . * * *
0

Cl)

Ci 41 ~P0 V\ U\ 0 0 0 V\ Hr IS\ 0 1 1 1 1
43 0 IA0 VN m0 0 C-- m r-4 :I

E-4+~ H

E-1

94 C: -I

0* C4

r.0q 4 r- -H ~ C~ Nl D' H 0 I
HA



0 00 c0 0 0 0 0 -- 4H 4 NNNen .D

C 94r-4

0 r~l WJ Cb 0 r -A fn I'a' 0 r-4 V\CC (n~ 0% e4 a,0v , z 0 0 0 0r4 HC\J CJNt n-t oC
"4 .4~ -4 0 00 00 0 0 00ooo 0H

:3 C- 0 000 00 00 00 0 0 000

0-r- "-1 ~ ~ ~ 0

* ~ 40 ) CeCC I\0 U- t- M~r 0-4 (1- _:t
0~ r-4 4-) N 4 N - C ~

E-44

o -

r-I~ ~ ~ ~ o i$ -4  
-4 N en r n -: l ' o '

r4

0C

i4 ,

E-4ca . ,4 - N m COO' -: H o m o - I I~~4.3..) H-

15~7



Explanation of Table 4.3.

Col. 1 - Col. 5 are the same as in Table 4.2.

Col. 6 gives the midspan moment in the model. This is

obtained from j x Col. 2 x L/3, where L/3 = 3.2".

Col. 7 gives the midspan moment in the prototype. The

expression for this value is:

M = Mm x fr- 3 x f 6 _ x G.F. (4.1.4)Mp

where, fr = the length scale

f f = the ratio of stresses

G.F. = the correction factor due to discrepencies
in the moment of inertia as given in
Appendix C

M = Prototype moment at midspan.p
Mm = Model moment at midspan

fr " 3 x fe-1  x G.F. = (15)3 x 2 x 1.45 = 976

therefore,

Mp = .976 Mm (Kip-in) (4.1.5)

Col. 8 - Col. 11 give the strain as read on the strain

indicator from one SR4 strain gage.

Col. 12 gives the curvature or the rotation per unit

length at midspan. The expression used to calculate this

as derived in Appendix D from the strain measurements:

1 -5 +26 2 -2C 3 + 5 C

R 4d (4.1.6)

Col. 13 gives the predicted curvature or rotation per

unit length of the prototype at midspan. It is obtained

from

(i/R)p = (l/R)m x fr (4.1.7)

where the subscripts indicate prototype and model respectively

and fr is the length scale.
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Explanation of Table .4.

Col. 1 - Col. 13 are obtained in the same manner as

indicated for Table 4.3.

Col. 14 is the curvature or the rotation per unit

length at midspan as- obtained from the 3 measured deflec-

tions. Since the moment is constant over the middle third

of the beam, the curvature is constant and has the shape

of a circular arc. The rate of change of slope at the

center line is then given by the following expression as

derived in the Appendix E

1 EL-2 =g

(&X)(4.1.8)

where,

L = the deflection at left third point

C = the deflection at the center line

ER = the deflection at the right third point

LkX = One sixth of span of the beam.
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TABLE 4.5. TEST RESULTS OF MODEL BEAM B2

1 2 3
Predicted

Total Predicted Prototype

Load at End Midspan Load on Total Load Midspan

of Beam Deflection Model on Prototype Deflection

(Lbs.) (Inches) (Lbs.) (Kips) (Inches)

1 .0115 5.92 3.88 .172

2 .017 ll.84 7.74 .255

3 .022 17.76 11.6 .33

4 .027 23.68 15.5 .405

5 .0315 29.60 19.3 .472

6 .036 35.52 23.2 .54

7 .042 41.44 27.0 .63

8 .046 47.36 30.9 .69

9 .052 53.28 34.8 .78

10 .0575 59.20 37.4 .862

11 .067 65.12 42.8 1.005

12 .085 71.04 46.4 1.275

13 .170 76.96 50.2 2.55

14 .265 82.88 54.0 3.98

15 .3515 88.80 57.7 5.27

16 .464 94.72 61.8 6.96
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TABLE 4.6. TEST RESULTS OF MODEL BEAM B3

1 2 3 5

Predicted

Load at End Midspan Total Predicted Prototype

of Beam Deflection Load on Total Load Midspan

Model on Prototype Deflection

(Lbs.) (Inches) (Lbs.) (Kips) (Inches)

1 .005 5.92 3.88 .075
2 .01 11.84 7.74 .15
3 .015 17.76 11.6 .225

4 .019 23.68 15.5 .287

5 .0225 29.60 19.3 .336

6 .027 35.52 23.2 .406

7 .0315 41.44 27.0 .473

8 .036 47.36 30.9 .54
9 .041 53.28 34.8 .615

10 .046 59.20 37.4 .68

11 .052 65.12 42.8 .78

12 .063 71.04 46.4 .95
13 .107 76.96 50.2 1.61

14 .255 82.88 54.0 3.38
15 .403 88.80 57.7 6.06

16 .592 94.72 61.8 8.90
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TABLE 4.7 TEST RESULTS OF MODEL BEAM B4

2

Load at End Midspan Total Load Predicted Predicted
of Beam Deflection on Model Total Load Midspan

On Deflection
Prototype Prototype

(Lbs.) (Inches) (Lbs.) (Kips) (Inches)

1 .002 5.92 3.88 .03

2 .003 T 11.84 7.74 .045

3 .0045 17.76 11.6 .0676

4 .006 23.68 15.5 .09

5 .008 29.60 19.3 .12

6 .0095 35.52 23.2 .1425

7 .0115 41.44 27.0 .1725

8 .013 47.36 30.9 .195

9 .015 53.28 34.8 .225

10 .017 39.20 37.4 .255

11 .019 65.12 42.8 .285
12 .021 71.04 1 46.4 .315

13 .023 76.96 50.2 .345
14 .025 82.88 1 54.0 .375

15 .029 88.80 57.7 .436

16 .031 94.72 61.8 .465

17 .033 100.64 65.5 .496
18 .036 106.56 69.6 .54
19 .040 112.48 74.0 .60

20 .044 118.40 77.1 .66

21 .049 124.32 81.2 .736

22 .057 130.24 85.0 .856
23 .065 136.16 89.0 .975

24 .085 142.08 92.8 1.275

25 .117 148.0 96.6 1.755
26 .163 153.92 100.0 2.44

27 .206 159.84 104.0 3.09

28 .272 165.76 107.8 4.08

29 .363 171.68 111.8 5.45
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TABLE 4.8 TEST RESULTS OF MODEL BEAM B5

2 3 5

Load at End Midspan Total Load Predicted Predicted

of Beam Deflection on Model Total Load Midspan
On Deflection

Prototype Prototype

(Lbs.) (Inches) (Lbs.) (Kips) (Inches)

1 .oo15 5.92 3.88 .0225

2 .003 11.84 7.74 .045

3 .005 17.76 11.6 .075

4 .007 23.68 15.5 .105

5 .009 29.60 19.3 .135

6 .0115 35.52 23.2 .1725

7 .014 41.44 27.0 .21

8 .017 47.36 30.9 .255

9 .0195 53.28 34.8 .292

10 .0225 39.20 37.4 .337

11 .025 65.12 42.8 .375
12 .0275 71.04 46.4 .412

13 .0305 76.96 50.2 .457

14 .0335 82.88 54.0 .502

15 .036 88.80 57.7 .54

16 .040 .9472 61.8 .60

17 .043 100.64 65.5 .645

18 .048 106.56 69.6 .72

19 .053 112.48 74.0 .795

20 .061 118.40 77.1 .915

21 .068 124.32 81.2 1.02

22 .077 130.24 85.0 1.155

23 .091 136.16 89 1.365

24 .110 142.08 92.8 1.65

25 .214 148.00 96.6 3.21

26 .284 153.92 100.0 4.26

27 .323 159.84 104 4.85

28 .380 165.76 107.8 5.70

29 .420 171.68 111.8 6.3
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3. The agreement in the case of the two "fixed" ended

beams is closer to the prototype test with support conditions

(a) as shown in Fig. 4.1.12. Since the model boundary con-

ditions in the model are simulated in a different way it

is hard to draw any conclusions as to which type of boundary

conditions the model beams approached. However, it should

be noted that there was some rotation at the supports of the

model and the extra heat applied in the manufacture of the

model at the two ends may have weakened the material at

those two points considerably more than the yield stress

of 18,000 psi of the regular annealing process.

4. The criterion used in picking the ultimate loads

from the load deflection curve will be illustrated with

the idealized bi-linear load deflection curve of beam B2

shown in Fig. 4.1.13. At the intersection of the two linear

approximations to the predicted load deflection curve we

read a total load of 46 Kips and a midspan deflection of

1 inch. This is actually the minimum value of a so-called
"ultimate load" since ate larger deflection the correlation

between the model test and the prototype test will be better.

In fact at a midapan deflection of 2.25 inches the total

ultimate load is the same for both or 48.5 Kips. Thus if

the maximum allowed deflection of the prototype structure is

known (which is the case in most structural problems) then

it is a simple matter to pick the ultimate load from the pre-

dicted load deflection curve obtained in a model study.

4.1.2 Portal Frames. In order to test the modeling

technique better in cases of real structures with more elab-

orate boundary conditions, it was decided to make model

tests of singly redundant portal frames as tested at full

scale at Lehigh University The results from the model

test were then used to predict the behavior of the prototype

and a comparison was made between this prediction and the

actual prototype results.

4.1 .2.1. Prototype Tests. The dimensions of the

prototype and the loading set up are shown in Fig. 4.1.14 •

The rolled section used for beams and columns are the 8WF40
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section used before in the wide flange beams. The loads

applied were two vertical concentrated loads at the 3/8
points. Side-sway and lateral buckling were prevented in

these tests. The boundary conditions used are shown in

Fig. 4.1.1)4.. They simulate pin ended supports at the base

of the columns. The detail of the horizontal reaction meas-

ureing assembly is shown in Fig. 4.1.15. Side-sway was

prevented by a longitudinal support on one of the knees.

Lateral supports were provided at the corner connections and

at 4 points along the length of the beam where severe plastic

straining was expected. The loads were transferred to the
web of the beam as in the case of the beam tests described

in the previous section.

4.1.2.2 The Model Tests. The model frame was

fabricated from the phosphor bronze section shown in Fig. 4.1.16

and was at a scale of 1:15 of the prototype. Lateral

supports were provided by means of thin brass wires attached
to the stiffeners of the beam and knees as shown in Fig. 4.1.17.

The joints used are a modified version of the prototype.
This and other types of connections will be discussed in

a section that follows. The horizontal reaction was

measured by reading the strain on a stiff steel bar 1" x .03"
in cross section. The bar together with other details of

the test can be seen in Fig. 4.1.17. The position of the
strain gages is shown in Fig. 4.1.16 together with the

horizontal reaction measuring bar.

Loads were applied to the frame by means

of bearing plates at the top flange as seen in Fig. 4.1.17.

Side-sway was prevented by attaching a thin brass wire to

the right hand side. However, this proved to be inadequate

under very large deflections and the ultimate failure of the
frame, after considerable plastification took place, was a

side-sway failure to the right. This is shown very clearly

in Figs. 4.1.19 and 4.1.20 of the failed specimen.

Deflections were measured at midspan by

means of an Ames dial as shown in Fig. 4.1.18.
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FIG. 4.1.17 POSITIONING OF THE MODEL PORTAL FRAME IN
SUPPORTING BOX, SHOWING LOADING METHOD.

FIG. 4.1.18 TEST SET UP FOR MODEL FRAME
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FIG. 4.1.19 MODEL FRAME AFTER TEST.

FIG. 4.1.20 MODEL FRAME SHOWING A LATERAL SWAY FAILURE
INITIATED BY LOCAL BUCKLING OF THE TOP
FLANGE AT LARGE DEFORMATION DUE TO BENDING.
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4.1.2.3 Test Results. The results of the test

on the model frame are given in Table 4.9 and the explana-

tion of the method of obtaining these results follows.

Fig. 4.1.21 shows the horizontal reaction variation with

half the total vertical load obtained experimentally from

the strain reading on the steel bar. The experimental

curve was used to calculate the midspan moment. Fig. 4.1.22

is a comparison of the moment curvature relation at midspan

obtained from the model test and the prototype test. In

Fig. 4.1.23 the load deflection results are compared from the

model and the prototype results.

4.1.2.4 Conclusions from the Portal Frame Test.

The results of this test proved a very fundamental point

which was not brought out convincingly by the beam tests,

namely that the full plastic moment could be developed in

phosphor bronze models as it is in structural steel.

Fig. 4.1.22 shows that the M- curves of model and prototype

agree very well considering the model was at 1:15 scale.

This close agreement as compared to the discrepancy fn the

simply supported beams is due to the better instrumentation

of the frame where strains were based on average values

rather than a single reading.

The load deflection predicted curve is

in poorer agreement in this case but still the error is

less than about 10%. Again it should be emphasized that

the agreement in predicting ultimate load is a function of

the maximum deflection to be tolerated in the prototype.

Once this is known then Pult can be read off the predicted

curve. Fig. 4.1.23 emphasizes this point since at deflections

of the order of magnitude of 4 to 6 inches the predicted

load is in closer agreement to the prototype test,

From the test of the model frame it was

found that the horizontal reaction measuring device was

too stiff and its strain response was low. This is believed

to be the main reason for the large deviation of the experi-

mental curve from the theoretical at relatively low loads

as shown in Fig. 4.1.21.
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Explanation of Table 4.3.

Col. 1 gives the load in lbs. at the end of the beam

of the loading frame.

Col. 2 gives the observed deflection of the model frame

at midspan.

Col. 3 shows the average strain from two gage readings

on the top flange at midspan.

Col. 4 gives the strain in on the bottom flange at

midspan. One gage reading only.

Col. 5 is the average of two gage readings at the

upper quarter depth of the web at midspan.

Col. 6 gives the average of two readings of the lower

quarter of the web at midspan.

Col. 7 gives the curvature or rate of change of the

slope at midspan. It is calculated from the followiag

expressions. (See Fig. D.1

1 -5(lE + 2E2  2 - C -
R 4d

as derived in the Appendix (D.2)

Col. 8 is the values of Col. 7 multiplied by the scale

factor of 1/15.

Col. 9 gives the total load, 2P, acting on the model

in lbs. It is obtained by multiplying Col. 1 by 5.56 the

ratio of lever lengths for the particular test.

Col. 10 is the predicted total load of a prototype

structure 15 times larger than the model. It is obtained

from the following relation:

P p = Pm X fr - 2 x ff-i (G.F.)
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where fr is the length scale and fI is the ratio of stresses

as previously defined. G.F. is a geometric factor to account
for the difference in moment of inertia as explained in Ap-

pendix C.

fr"2 x f -1  x G.F. = (15)2 x 2".45 = 652

Col. 11 is the value of one half of Col. 10.
-1

Col. 12 is Col. 2 times 15 or fr the length scale.

Col. 13 is the horizontal reaction induced by the

vertical load on the frame. It is obtained from measurements
of strain on a stiff bar. The plot of P vs H is given in

Fig. 4.l.21.

Col. 14 gives the midspan moment of the frame in lb.-in.
It is obtained from the expression:

M = 4.2P - 5.6H

as derived in Appendix F.

Col. 15 gives the predicted midspan moment in Kip

inches. It is obtained from Col. 14 by multiplying with
the factor .652 as found for Col. 10 times 15 because the

units of moment are length x force. The expressioai there-

fore is

Mp = Mm x fr
-3 x f x (G.F.)

The factors are the same as stated previously.
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4.1.3 Connections. Welded steel structures have become

increasingly more popular because of the continuity of

framed structures which ensues when joints and connections

are carefully welded. In the model studies in phosphor

bronze it was demonstrated that the full plastic moment of

the prototype could be predicted from model studies at reduced

scales. This can occur in a framed structure only if the

connections can withstand the relatively large rotations

imposed by plastic design. To verify the adequacy of various

joints model connections were made and tested in a manner

similar to the tests on connections at Lehigh University(46)

These were not model reproductions of the prototype tests
however since an 8B13 section was used in the "prototype".

This did not allow correlation with the approximate phosphor

bronze section used in the model connections.

4.1.3.1 Prototype Tests. Since the sections of the
prototype tests could not be duplicated in the model only
the method of testing was of real interest in the Lehigh

test series. Some of the model joints were made in a similar

fashion as the prototype. The loading arrangement shown in

Fig. 4.1.24 was modified and used in the model tests.

4.1.3.2 The Model Tests. The joints which were

modeled are shown in Figs. 4.1.25 and 4.1.26. The joint

in Fig. 4.1.26 is a typical beam to column connection whereas
the joints of Fig. 4.1.25. show the same section in beam

and column.

The method of making the joints is illus-

trated in Fig. 4.1.27 which shows the various pieces which

are silver soldered together to make connection K. Figs.

4.1.28 - 4.1.30 show the model joints after testing.

Fig. 4.1.31 shows the method of loading
and support of the model frames. The horizontal bar gave

the necessary alignment so that the load could be applied

concentrically. In Fig. 4.1.32 the whole supporting frame is

shown during a test. Only deflections were measured in

these tests. From these the rotation of the joint could be
approximated. Fig. 4.1.33 shows a closeup of a test specimen

in whichthe method of support is clearly shown.



FIG. 4~.124 TEST SETUP FOR CONNECTION P (REP. 416 )
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FIG. 4.1.25 DIMENSIONS OF THE MODEL JOINTS TESTED
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FIG.4.1.26 BEAM TO COLUMN MODEL CONNECTION
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FIG. 4.1.27 PARTS WHICH GO INTO THE MAKING OF
A MODEL JOINT.

rr

FIG. 4.1.28 MODEL JOINTS AFTER FAILURE. NOTE THE
MODE OF FAILURE IN EACH.
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44. -t

FIG. 4.1.29 TYPES A AND C JOINTS AFTER FAILURE, TYPE C
JOINTS WERE USED IN THE PORTAL FRAMES.

p- I

FIG. 4.1.30 TYPE P JOINT AFTER FAILURE.
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FIG. 4.1.31 TYPE "K" JOINT IN SUPPORTING FRAME
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FIG. 4.1.32 MODEL JOINT IN THE SUPPORTING FRAME DURING
TEST.

FIG. 4.1.33 CLOSEUP OF MODEL JOINT K-I AFTrR FAILURE.

NOTE THE BUCKLING OF THE LOWER BEAM FLANGE.
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4.1.3.3 Test Results. Tables 4.10 to 4.17 give

the test results on the 8 tests made on model joints.

Explanations of the values in the various columns of the

tables are also given. The notations used for these calcu-

lations is given in Fig. 4.1.34. The moment vs. joint

rotation curves are plotted in Fig. 4 1.l35 for all the

joints except P-1. All the joints depicted in this figure

had the same dimensions, the same cross sectional area and

were tested in the same manner. The only variable was the

configuration of the corner. In Fig. 4.1.36 the moment

rotation curve for joint P-i is given. On the same plot
the moment curvature relation for the phosphor bronze sec-

tion is given. Joint P-I failed on the column side which

was apparently much weaker. This can be observed in Fig. 4.1.30.

4.1.3.4 Conclusions from the Connection Tests.

Looking at Fig. 4.1-35 a number of conclusions may be drawn.

1. Except for connection A-1 all the joints can mobi-

lize considerable joint rotations. Joint A-I was the

unstiffened joint.

2. The scatter from only two tests of each joint is

not bad in the case of joint M and C but it is bigger in

the case of joint K. This is due mainly to variation in

workmanship.

3. The strongest joints were type M which had the

most stiffeners.

4. Joints of type C show a lower value of moment

capacity than type M but since they have proved adequate

in the case of the frame tests they should be recommended

since they are considerably easier to manufacture.

5. Type K joints are considerably stronger than C

but these are as hard to make as type M as shown in Fig.

4.1.25 so they have no decisive advantage over type C.
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// / K CONNCTION

/ DEFORMATION

NOTATION :/
P VERTICALLY APPLIED LOAD

N AXIAL COMPONET OF P

V SHEARING COMPONENT OF P .
Bp VERTICAL DEFLECTION

NDEFLECTION ALONG V

DEFLECTION ALONG N
C HALF THE JOINT ROTATION

d MOMENT ARM TO JOINT CENTER
MJOINT MOMENT CAUSED BY P

FIG. 4.1.34 TYPICAL CONNECTION BEFORE ANU AFTER

BENDING DEFORMATION CAUSED

BY TWO COLINEAR FORCES
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FIG.4.I.35 MOMENT ROTATION CURVES OF MODEL JOINTS
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FIG.4.1.36 MOMENT ROTATION RELATIONS FOR JOINT P-i

192



TABLE 4.10 TEST RESULTS OF MODEL JOINT K-I

1 2 3 5 6

Load at Vertecal v Total P Moment
End of Deflection Joint Load on at Joint
Beam in 8 Rotation Joint
(Inches) (IRches) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .0045 .00318 .00146 5.91 9.1
2 .006 .00424 .00195 11.82 18.2
3 .008 .00565 .00259 17.73 27.3
4 .009 .00636 .00292 23.64 36.4
5 .011 .00777 .00354 29.55 45.5
6 .012 .00846 .00388 35.46 54.6
7 o142 .0100 .00459 41.37 63.7
8 .0165 .01165 .00535 47.28 72.8
9 .0188 .0133 .0061 53.19 82.0

10 .021 .01 82 .0068 59.1o 91.0
11 .023 .01625 00746 65.01 I100.0
12 .026 .01835 .00832 70.92 109.0
13 .0285 .02015 .0092 76.83 118.0
14 .0314 .0222 .0102 62.74 127.2
15 .034 .024 .011 83.65 136.5
16 038 .02682 01235 94.56 145.8
17 .0465 .03282 .0151 100.47 154.8
18 .0535 .0378 .01735 106.38 164
19 .072 .0508 .0234 112.29 173
20 .127 .090 -0414 118.20 1 2
21 .25 .177 .011 ]24.11 191

193



Explanation of Table 4.10

Col. 1 is the load at the end of the beam of the

loading frame. This load was applied in increments of

one pound and in such a manner that enough time was given

to the specimen to allow for creep beyond the yield point.

Col. 2 is the deflection in the direction of the

applied load P on the joint. This was measured with an

Ames dial gage which reads to the nearest one thousandth

of an inch. Since the bottom leg of the joint was

prevented from moving vertically at Point B (Fig. 4..34)
the upper leg at the point of load application A (Fig. 4.1.34)
moved down 2 x p.

Col. 3 is the component of the vertical deflection

of Col. 2 in the direction of the shearing component of

force V.

Col. 4 is the total joint rotation or 2 0 as shown

on the Fig. 3.1.34. This was obtained approximately by

dividing the deflection Sv by the moment arm a.

Col. 5 is the load P on the joint which is obtained
from the load at the end of the beam by multiplication with

the factor of the loading frame depending on the position

of the specimen along the beam.

Col. 6 is the moment at the knee or the intersection

of the 2 center lines of the members forming the joint. It

is obtained by multiplying the shearing component of P by

the moment arm a. Note that the axial force N has no moment

component at the knee.

M = (.707P) (2.18) = 1.54P (in-lb.)
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TABLE 4.11 TEST RESULTS OF MODEL JOINT K-2

1 2 156
Load at Vertical Total P Moment
End of Defj ection 9v Joint Load on at Joint
Beam in Rotation Joint
(Lbs.) (Inches) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .0018 .00127 .000582 5.91 9.1
2 .004 .00282 .001295 11.82 18.2
3 .007 .00494 .00227 17.73 27.3

.009 .00635 .00292 23.64 36.4

.0112 .0079 .00362 29.55 45.5
6 .0138 .00975 .004.8 35.46 54.6
7 .0174 .0123 .00565 41.37 63.7
8 .0194 .0137 .00629 47.28 72.8
9 .021M .0154 .00707 53-19 82.0
10 .024 .017 .0078 59.10 91.011 .028 .0198 .0091 65;0l 100.0
12 .032 .02262 .0104 70.92 109.0
13 .036 .02545 .0117 76.83 118.0
14 .0406 .0287 .0132 82.74 127.2
15 .050 .0353 .01622 88.65 136.5
16 .0595 0421 .01935 94.56 145.8
17 .0735 .052 .0239 100.47 154.8
18 .111 .0785 .0361 106.38 164
19 .258 .1825 .0836 112.29 173
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TABLE 4.12 TEST RESULTS OF MODEL JOINT M-i

1 f 5  6

Load at Vertical Total P Moment
End of Def ection Ev Joint Load on at Joint
Beam in Rotation Joint
(Lbs.) (Inches) (Inches) (Radians) (Lbs.) (Lbz..-In)

1 .004 .00283 .0013 5.91 9.1
2 .0075 .0053 00243 11.82 18.2
3 .010 .00707 .00324 17.73 27.3
4 .011 .00777 .00356 23.64 36.4
5 .014 .0099 .001454 29.55 45.5
6 .0165 .01165 .00535 35.46 54.6
7 .019 .0134 .00615 41.37 63.7
8 .0215 .0152 .00698 47.28 2.8
9 .0235 .0166 .00762 53.19 1.9
10 .0265 .0187 .00859 59.10 91.0
11 .029 .0205 .0094 65.01 100.0
12 .0315 .0222 .0102 70.92 109.0
13 .0345 .0244 .0112 76.83 118.0
14 .0375 .0265 .01215 C.74 127.2
15 .041 .029 .0133 88.65 136.5
6 .047 .0332 .01522 94.56 145.8
17 .060 .0424 .01945 1004 7 154.8
18 .07?45 .0526 .o2415 1O6.38 164
19 .109 .077 .0354 112.29 173
20 .145 .1025 .047 118.20 182
21 .227 .161 .074 14.11 191
22 .390 .276 .1265 130.02 200.5
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TABLE 4.13 TEST RESULTS OF MODEL JOINT M-2

1 2 3

Load at Vertical Total P Moment
End of Def ection 9v Joint Load on at Joint
Beam in I Rotation Joint
(Lbs.) (Inghes) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .0025 .00177 .000812 3.22 4.96
2 .0035 .00248 .00114 6.44 9.82
3 .005 .00354 .001625 9.66 14.9
4 .007 .00495 .002275 12.88 19.83
5 .0085 .0060 .002755 16.1o 24.80
6 .0100 .00707 .00325 19.32 29.80

.0115 .00815 .00374 22.54 34.70

.0128 .00905 .00416 25.76 39.70
9 .0135 .00955 .00439 28.98 44.60

10 .0145 .01025 .0047 32.2 49.60
11 .0159 .01125 .00516 35.42 54.60
12 .017 .012 .0055 38.64 59.60
13 .018 .01275 .00585 41.86 64.5
14 .019 .01345 .00617 45.08 69.5
15 .0205 0145 .oo665 46.30 74.5
16 .022 .01555 .00713 51.52 79.5
17 .023 .01625 .00745 54.74 84.4
18 .0245 .01732 .00795 57.96 89.2
19 .0258 .01825 .00 37 61.18 93.4
20 .027 .0191 .00875 64.40 99.2
21 .0285 .0202 .00927 67.62 104.2
22 .030 .0212 .00972 70.84 109
23 .032 .02263 .0104 74.06 114.2
24 .0336 .0238 .0109 77.28 119
25 .0352 .0249 .0114 80.50 124
26 .0375 .0265 .01215 83.72 129
27 .0395 .0280 .01285 86.94 133.8
28 .0424 .03 .01375 90.16 139.0
29 .045 00318 .0146 93.38 143.7
30 .050 .0354 .0162 96.60 149
31 .054 .0382 .0175 99.82 153.5
32 .060 .042 .01945 103.04 159
33 .066 ,046 .0214 106.26 163.5
34 .0775 0548 .0251 109.48 168.5
35 .087 .0615 .0282 112.70 173.5
36 .100 007 o.0324 115.92 178.2
37 .1215 :o86 .0394 119.14 1 3.5
38 .146 .1032 .0473 122.36 188.5
39 .280 .198 .0907 125.58 193.2
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TABLE _. ' WE3T RESULTS OP 16 'EL JOTET C-i

2 2' - -I

Load at Vertical Total P Moment
End of Def ection Joint Load on at Joint
Beam in Rotationi Joint

(Lbs.) ches) Ircies) (Radians)| Lbs.) (Lbs-n)

1 .001 C"tO707 .000324 -3.22 4.96
2 .002 ,,C).414 •o6t .44 9.82
3 .0035 . 148 .00114 \66 14.9
4 .005 .0- 53 .00162 1 C.9 19.83
5 .O065 . O,,16 .00211 1 16. 24. 80
6 .0082 . 0'58 .00266 19 29.80
7 .01 .00'-07 .00324 22.5 34.70
8 .0115 .0('-12 .00372 25.76' 39.70
9 .0128 .0('9)5 .00415 28.98 b70

10 .0148 .01 OiO 8  .00481 32.6 L'6
11 .0162 .00528 35.142
12 .o18 .oo'72 .00584 38.61 9
13 .O0 .01L-4. .0065 8
14 .0228 .013 .00747 45.08 69.5
15 .925 .OV' .00812 4

1682 .0 1 48.30 74516 29 . 0 8 .00907 51.52 79.5
17 .01 0295 .0;i2 54.74 84.4
18 .,0 4 . :0114 57.96 89.2
19 .C0, .C272 .0125 61.18 93.4
20 .Cs4 .0315 .01445 64.140 99.2
21 .0525 .0372 0171 6"7.62 1 0. 2
22 .0615 0435 :0200 70.84 i 1C9
23 .072 .031 .0234 74.06 114.2
24 .0P- .0612 .0281 77.28 119
25 .102 .0"22 .031 80.50 124
26 1365 .0965 .0433 83.72 129
27 2 -. 0 .163 .075 86.94 133.8
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TABLE i4.15 TEST RESULTS OF MODEL JOINT C-2

Load at Vertical Total P Moment
End of Dof action vJoint Load on at Joint
B~ear, in ipRotation Joint
(Lbs.) (inches) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .001 .000707 .000325 3.22 4.96
;. .0015 .00106 .000486 6.44, 9.82

.0022 .00155 .000712 9.66 14.9
.03 .00212 .00974 12.88 19.83

5 .004 .00282 .00129 16.10 24.80
6 .0052 .00367 .001685 19.32 29.80

o0o65 .00459 .00211 2.t 34.70
.008 .00565 .00259 25739.70

9 .01 .0070 03 28.98 44.60
10 .0115 .00815 .00374 32.6 49.60
11 :0135 .00955 .0043 35.42 54.60
12 .0155 .011 .00505 38.64 59.60
13 .0178 .01264 :00579 41.86 64.5
14 .020 .01414 0065 45.08 69.5
15 0024.12 .0171 .00785 4830 74.5
16 .025 .0177 .0813 V51.52 79.5
N.0266 .018886 54.74 84.4 i
1.0292 .02062 .00946 57.96 89.2

19 .032 .0226 .0104 61.18 93.4
20 .0356 .0252 .0115 64. 99.2
21 .042 .0297 .0136 67. 82 104.2 1
22 .0502 .0355 .0165 70.84 109

01.0438 .201 74.06 114.2
.075 .03 .0243 77.28 119

25 .0872 o0616 .0283 80.50 124
26 l106 .075 .0344 83.72 129

2.127 .0898 0 "1412 186.9 133.8
2.151 .1068 .049 90.1k 141

29 .1835 .13 o0596 93.38 143.6
30 .2585 .183 o084 96.60 14.8
31 .300 .212 .0972 99.82 153.5
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TABLE 4.16 TEST RESULTS OP MODEL JOINT A-3
S2 2 h 1 6

Load at Vertical Total P Moment
End of Def~ation Ov :oint Load on at Joint
Beam in Rotation Joint
(Lbs.) (Inches) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .002 .001414 .00065 3.22 4.96
2 .0055 .0039 .00179 6.44 9.82
3 .0076 .00536 00246 9.66 14.9

.0102 .0072 .0033 12.88 19.83

.0128 .00905 .00416 16.10 24.30
6 (61.5 .0106 o0046 19.32 29.80

~ 017 .012 .0055 22.5k 34.70
.19 .0134 .00615 25.7 39.70

9 .021 . 01482 .0068 28.98 44.70
10 022 .0164 .00 32.6 49.60
11 .0 . 0184 .085 35.42 54.6o
12 .0285 .0201 .00923 38.64 59.60
1 .0316 .0224 .0103 41.86 64.5

50247 .0113 45-08 69 5
o 6 6o.0325 .0149 48.30 74.5

16 0 0382 .0175 51.52 79.5
06 06 21' 47 84.4.9.

11 82 :05 :26 ~ 57-96 89.2
19 .110 .0777 .0357 61.18 93.7
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TABLE 4,.17 TEST RESULTS OF MODEL JOINT P-i

1 2 6

Load at Vertical Total P Moment
End uf Deflection 6v Joint Load on at Joint
Beam in Rotation Joint
(Lbs.) (inches) (Inches) (Radians) (Lbs.) (Lbs-In)

1 .0065 .0046 .00211 3.22 11.72 .009 .oo61 .00291 6.h 23.4.o1o5 .0074 00 :8
.13 .0 2 :0 2 12.88 8
0155 .01095 .00502 16.10 58.5

6 :01 .01270 .00582 19.32 0.2
7 .0202 .01425 .00655 22.54 Z2
8 .0232 .0164 .00755 25.76 93.6
9 .027 .0191 .00875 28.98 105.210 .0315 .0222 .0102 32.6 118.5

11 .0365 .0258 .01182 35.42 129.0
12 .0425 .03 .01375 38.6 140.8
13 .050 .0353 .0162 41.8k 152.2
14 .0715 .0505 .02318 45.08 16415 .136 .096 .044 48.30 175.8
16 .239 .169 .0775 l 52 187.2
17 .430 .304 .1395 54.74 199
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4.2 DYNAMIC TESTS ON MODEL PORTAL FRAMES MADE OF PHOSPHOR

BRONZE

Tests on fixed ended portal frames were performed

to check the dynamic response of simple structures and com-

pare the increase in strength to that of a static test.

In these dynamic tests the impulsive loading machine used

is described in Section'3.4.2. The static test was performed

in the beam loading apparatus.

4.2..1 Type of Pulse Possible. The impulsive loading

machine has the capability of giving rise times down to

3-4 milliseconds. However, these are more impactive rather

than impulsive type loads since to achieve these small rise

times the ram must not be in contact with the structure but

must have an initial travel. A typical load pulse experienced

by a frame is shown in Fig. 4.2.1 where a rise time of about

3 milliseconds was achieved.

)4..2.2 The Model. The portal frame was made of the
same phosphor bronze section which approximates the 8WP40

rolled section at 1:15 scale. The dimensions and the details

of obtaining the necessary fixity are shown in Fig. 4.2.2.

The model was supported in a special frame shown in Fig. 3.4.11

which was placed in the machine in such a way so that the

vertical travel of the machine ram produced the lateral load

on the model. Load was measured by the load cell described

earlier and the lateral displacement by an L.V.D.T. Both

of these outputs were displayed on a cathode ray oscilloscope

and a permanent record was taken photographically. Fig. 4.2.3

shows the model frame before and after the test.

4.2.3 The Test Results. The load time variation as

experienced by the model frame is plotted from the photo-

graphic record in Fig. 4.2.4. Fig. 4.2.5 gives the displace -

ment time variation for the same frame. From these two plots

we can find the load displacement curve of the frame as

shown in Fig. 4.2.6. This is the dynamic response of the

model frame covering the early part of the response.
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a. BEAM AND COLUMN PARTS BEFORE ASSEMBLY

b. WELDED FRAME BEFORE TESTING

c. FRAME #1, AFTER TESTING

FIC. 4.2.3 PICTURES SHOWING THE MODEL BEFORE AND AFTER
THE DYNAMIC TEST
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A static test was also made on a similar frame

and the results are given in Table 4.18. The load deflection

curve for this model is given In Fig. 4.2.7.

4.2.4 Conclusions from the Dynamic Tests. No correla-

tion between model and prototype could be obtained in this
case since there were no known full scale tests to model.

However, some conclusions could be drawn from'this limited
study of dynamic behavior.

1. It can be seen that the dynamic load taken by the
model frame is considerably larger than the static test

value. The dynamic Pult. Is about 220 lbs. and the static

is about 130 lbs. where equal deflections were used as a

criterion of finding the static Pult.

2. The mode of failure in both static and dynamic tests
was essentially the same.
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TABLE 4.18 RESULTS OF STATIC LATERAL FORCE ON MODEL FRAME

Load at End Horizontal Horizontal
Of Beam Deflection i Force
(Lbs.) (Inches) (Lbs.)

1 .006 5.91
2 .071 11.82
3 .014 17.73
4 .017 23.64
5 .0216 29.55
6 .0265 35.46
7 .0315 41.37
8 .0389 47.28
9 .045 53.19

10 .053 59.10
11 .o625 65.o]
12 .0745 70.92
13 .090 76.83
114 .102 82.74
15 .1182 88.65
16 .1302 94..56
17 .1485 100.47
18 .174 106.38
19 .2215 112.29
20 .2825 118.20
21 .351 124.11
22 .461 130.02
23 .600 135.93

24 .815 141.84
25 .986 147.75
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APPENDIX A

Consider a linearly elastic beam of length L,

stiffness EI, coefficient of damping d and mass S per

unit length. The beam is subjected to a solid body
acceleration £ by the application of constant forces

= to its two ends. It is desired to deter-

mine the deviation at time t of the bending mopent of points

along the beam from their steady state value

MASS %/UNI LMNTH
STIPV406 91

Fig. A.1

Let the x - and y- axes of Figure A.1 move with the beam.
Then the governing equation for dynamic equilibrium of the

beam is

El L dz... 21 y (Al)

Initial conditions: Y = 0 for t = 0 (A2)

Bound. conditions: y = -0 for x = 0 (A3)
bia and x=L
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Since the governing equation is not homogeneous,

substitute y(xt) = Y(x,t) + y (x) (A)

and Eqn. (Al) becomes

E [ + ] = - _ -.. 3 (AS)

Equation (A5) is homogeneous if d4 q(i) = 4 @ (A6)
aEI

El 'a Y .. y d (A7)

The boundary conditions of the new governing eqn. (A7)

are homogeneous if, according to (A3) and (A4)

T = = 0 for x=O and x=L (A)

Equation (A6) with boundary conditions (A8) represents a

uniformly loaded simply supported beam so that

a 24EI [x- 2Lx3+ Lax ()

It remains to solve (A) subject to the initial conditions

Y (x,o) = - q (x) (AlO)
-- (x o) = 0lbt '

and boundary conditions

Y (o,t) = Y(L,t) = 0 (All)

eY (ovt) bnY- (Lt) = 0

A trial solution Y = f(x) g(t) leads to

= = k4 where k is real, an
f g f is differentiated with resp

4t to x. g with respect to t.
• " w c[ c os wt + c' sin w c cos kx + c sin kx

+ c oosh kx + c sinh k]
2 4

i 21,3



According to the boundary conditions (All)

C = c = C = 0
1 a 4

and sin kL 0

. = .I...- n = 0, 1, 2,...
L

also w = / vEI d* (A12)

Generally thus

Y = r t [ell coswt + o Isinwt sin nI A3
n=l 2 L

From the second of initial conditions (A1O):

so that (A13) becomets

Y Cn - [coswt + sin wt sin -L--

The first initial condition yields
I- -

Cn sin - V(x) = 2[x- -. Lx
n1I L 214EI

The Peurer coefficients, determined in the normal

fashion, are c [ l 11

The general solution for the deflection of the beam is

thus 'A
8  L4tI (x d t

EI 1z 1 -C Lxz LP'n2 L 1EI f2 - - + 2-1- e n=1 ....

(cos t + dL sin wt sin Snxl2tw L
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The first three terms inside the bracket represent the

static deflection of the beam, and the last term is an

oscillation the amplitude of which is decreasing with

time.

The moment in the beam at time t is

EI!Uxt Lx + 4Ll(~) 25
MX~I 2 2 Ir an=1 n £

(cos wt +-. sin wt) sin nwx23jw L J

At midspan,
d

M L 2L1  d__
M +9- (coswt+ -siriwt)sin-

Ha2 w

It is desired to give the variation of M with time for

various percentages p of critical damping. From (A12)

dcr - 2 n2 ir _

n_____ l U

and w (1 -p)LG V

d nWe E (A2 Le )

Substitution of (A16) and (Al7) into (A14) yields all the

desired results.
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Table B. 1

Appendix B: Computations for Section 2.7.1

X y = 0 y = t

& b = 0. 11- b=0. 25 b=0-501 b-0. 1C9 b=0. 25 9 b=. 509'

0 -0.0041 -0.0093 -0.0128 -1.128 -0.753 -0.559

0.125 -0.0038 -0.0085 -0.0118 -0.47 -0.704 -0.642

0.250 -0.0028 -0.0064 -0.0090 0.119 -0.506 -0.721

0.375 -0.0014 -0.0034 -0.0049 0.228 -0.1o6 -0.516

0.500 0.0001 0.0002 0 0.050 0.361 0

0.625 0.0016 0.0036 0.0049 0.070 o.616 0.516

0.750 0.0028 0.0064 0.0090 0.201 0.509 0.721

0.875 0.0036 0.0083 0.0118 0.149 0.149 0.642

1.000 0.0039 0.0089 0.0128 0.063 0.031 0.559

6.x
Values of the ratio -- for t = I.

p
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Tabl e B. 2

y 0 .8t, b=.1I

T 'a i. 4

0 -0.1851 0.2490 0 90 0.317 0.249 -0.185
0.125 -0.1342 0.1990 0.0968 105 0.193 0.225 -0.160
0.250 -0.0388 0.1113 0.1171 119 0.139 0.180 -0.098
0.375 0.0187 0.0624 0.0839 127 0.087 0.127 -0.046
0.500 0.0362 0.0514 0.0656 132 0.066 0.110 -0.022

0.625 oo531 0.0164 0.0535 145 0.057 0.091 -0.021
0.750 0.0682 0.0189 0.0317 154 0.o40 0.084 0.003
0.875 0.0642 0.0213 0.0072 170 0.022 0.064 0.020

y = 0.8 t, b = 0.25,

i I- p p p T-p

0 -0.291 0.456 0 90 0.373 0.456 -0.291
0.125 -0.259 0.429 0.198 105 0.397 0.482 -0.312
0.250 -0.169 0.353 0.195 108 0.325 0.417 -0.233

0.375 -0.039 0.240 0.234 120 0.273 0.373 -0.173
0.500 0.087 0.125 0.208 132 0.209 0.315 -0.102
0.625 0.162 0.055 0.131 146 :).142 0.250 -0.033
0.750 0.169 0.047 0.048 161 0.067 0.175 0.041
0.875 0.136 0.076 0.005 176 0.030 0.136 0.076

1.000 0.056 0.094 0 18o, 0.019 0.094 0.056
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Table B. 3

y = 0.8 t, b = 0.50 Z

L i iJy T max _ t
p p p p p p

0 -0.2896 0.6564 0 90 0.473 0.656 -0.290

0.125 -0.2802 0.6502 0.0786 95 0.470 0.655 -0.285

0.250 -0.2389 o.6170 0.1711 101 0.461 0.650 -0.282

0.375 -0.1434 0.5316 0.2577 109 0.424 0.618 -0.230

0.500 0 0.4000 0.294 118 0.355 0.555 -0.155
0.625 0.1434 0.2684 0.2577 128 0.265 0.471 -0.059

0.750 0.2389 0.1821 0.1711 138 0.194 0.404 0.017

0.875 0.2802 0.1498 0.0786 155 0.104 0.319 0.111

1.000 0.2896 0.1436 0 180 0.073 0.290 0.144

y = 0.6 t, b =0.10t

x x y T max (r 0-I

-Y -- .I of. --

p p p p p p

0 -0.0652 0.1093 0 90 0.087 0.109 -0.065

0.125 -0.0560 0.1013 0.0224 98 0.082 0.105 -0.059

0.250 -0.0340 0.0844 0.0361 105 0.069 0.095 -0.044

0.375 -0.0083 o.o651 0.0382 113 0.053 0.081 -0.025

0.500 0.0117 0.0505 0.0327 120 0.038 0.069 -0.007
0.625 0.0247 0.0413 0.0248 126 0.026 0.059 0.007

0.750 0.0335 0.0356 0.0171 134 0.017 0.052 0.017

0.875 0.0395 0.0323 0.0090 146 0.010 0.046 0.026

1.000 0.0418 0.0300 0 180 0.012 0.042 0.030
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Table B.4

Ty = 0.6 t b =0.25t
x _x LT maX 7 max

p- p p , p p
o -0.1334 0.2493 0 90 0.191 0.249 -0.133

0.125 -0.1191 0.2391 0.0398 96 o.184 0.244 -0.124

0.250 -0.0828 0.2116 0.0708 103 0.163 0.229 -0.099

0.375 -0.0322 0.1728 0.0859 110 0.133 0.203 -0.063

0.500 0.0200 0.1335 0.0822 118 0.100 0.177 -0.023

0.625 0.0604 0.1040 0.0628 127 0.067 0.149 0.016
0.750 0.0828 0.0884 0.0387 133 0.039 0.125 0.047

0.875 0.0909 0.0841 0.0172 151 0.018 0.107 0.072

y = 0.6 t b = 0.50i

x-" x  Z. I" max O" I cr,

L p p p p p p

0 -0.1593 0.4169 0 90 0.288 0.417 -0.159

0.125 -0.1486 0.4068 0.0403 94 0.280 0.409 *-0.151

0.250 -0.1176 0.3867 0.0778 98 0.264 0.398 -0.129

0.375 -0.0653 0.3485 0.1062 104 0.233 0.375 -0.091

0.500 0 0.3000 0.1171 109 0.190 0.340 -0.040

0.625 0.0653 0.2515 0.1062 114 0.140 0.298 0.018

0.750 0.1176 0.2133 0.0778 119 0.091 0.257 0.074

0.875 0.1486 0.1932 0.0403 121 0.046 0.217 0.125

1.000 0.1593 0.1832 0 90 0.012 0.183 0.159
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Table B.5

y 0.4 t b a 0.1 L
X- x ___ yma ,. T

t p p p - P p

0 -0.0245 0.0569 0 90 0.041 0.057 -0.025
0.125 -0.0219 0.0551 0.0067 95 0.039 0.056 -0.022
0.250 -0.0154 0.0505 0.0117 100 0.035 0.053 -0.018
0.375 -0.0065 0.0443 0.0141 105 0.029 0.048 -0.010
0.500 0.0026 0.0380 0.0139 109 0.022 0.043 -0.002
0.625 0.0101 0.0329 0.0115 113 0.016 0.038 0.005
0.750 0.0154 0.0295 0.0079 114 0.011 0.033 0.012
0.875 0.0183 0.0277 0.0041 111 O.006 O.029 0.017

1.000 0.0193 0.0271 0 90 0.004 0.027 0.019

y -o.4 t b= 0.25t
x G' ry " Y 0 t max cr1  -

p p p p p p

0 -0.0544 0.1374 0 90 0.096 0.137 -0.054
0.125 -0.0492 0.1338 0.0143 95 0.092 0.134 -0.049
0.250 -0.0352 0.1240 0.0254 99 0.084 0.128 -0.039

0.375 -0.0222 0.1106 0.0313 103 0.073 0.118 -0.029
0.500 0.0044 0.0966 0.0315 107 0.056 0.106 -0.005

0.625 0.0222 0.0846 0.0267 110 0.041 0.094 0.012

0.750 0.0352 0.0760 0.0188 112 0.028 0.083 0.028
0.875 0.0430 0.0710 0.0097 108 0.017 0.072 0.040
1.000 0.0456 0.0694 0 90 0.012 0.069 0.046
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Table B. 6

y = 0.4t b--0.25.

- x a

m - -

o -0.0708 0.2482 0 90 0.1595 0.248 -0.071

0.125 -0.0652 0.2442 0.0170 93 0.1550 0.245 -0.066

0.250 -0.0498 0.2339 0.0314 96 0.1450 0.237 -0.053

0.375 -0.0265 0.2183 0.0411 99 0.1295 0.225 -0.034

0.500 0 0.2000 0.0466 102 0.1100 0.210 -0.010

0.625 0.0265 0.1818 0.0411 104 0.0875 0.192 0.017

0.750 0.0498 0.1661 0.0314 104 0.0659 0.174 0.042

0.375 0.0652 0.1557 0.0170 100 0.0481 0.154 0.057

1.000 0.0708 0.1518 0 90 0.0405 0.152 0.071
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APPENDIX C

As discussed earlier, the cross section chosen

for the phosphor bronze models was only an approximation

of the prototype at the length scale used. This was done

in order to faciliatate the machining operations and to

cut down on the cost. It was also assumed that geometric

corrections could be easily applied to the model results.

The most significant geometric property involved

in the type of tests performed was the moment of inertia.

This was the case because bending moments were of primary

concern. The effects of axial forces and shearing distor-

tions were neglected.

We define the geometric factor, G.F., as follows:

G.F. - Geometric property of Exact Model

Geometric property of Actual Model (C.l)

For cases involving the moment of inertia of the

section the following correction should be used to the

values predicted from the model test:

I xf 4

G.F. =p fr
Im (C.2)

where,

I = moment of inertia of prototype about the
strong axis.

I = moment of inertia of model section about
strong axis,

f = length scale.

In the case of the 8WF40 section used as a prototype at a

scale of 1:15 the model section had an Im = .002 in4 and

thus the G.F. is

G.F. - 146.2 x (li! -1.45

.002
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This was used in all computations of moment and load predic-

tion from the phosphor bronze model tests.
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APPENDIX P

In a section under constant moment we can find

the curvature or the change in slope of the elastic curve
per unit length from the measurement of strains across

the critical section.
From elementary beam theory we know that using

the convention of Fig. D.1

1 M (D.l)
R E

in the elastic range and where 1/R is usually taken as

dx If we measure the strains across the critical section

and assume that plane sections before bending remain plane
after bending we get:

1 = d 2 dj(D.2)

R dx dx

where 0 is the slope to the elastic curve or the rotation

of the critical section.

Assuming that strain measurements are taken at
the top and bottom flanges and at the upper and lower
quarter points of the web we have looking at Fig. D.1

= top flange strain (-ve)
* upper quarter point strain in web

3 a lower quarter point strain in web

F 4 bottom flange strain (+ve)
d - depth of section

For an infinitesimal length of beam at the critical section,

say dx, we have,
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d d/2

2 3L..2..-- . (D.3)
d/4 d/4

The average of these values is taken as the curvature:

= + 2(E 3 -6 2 ) + (e2 - C1 )

R dY, 4d 4d 4d

+ 4 - C-3) (D.4)

4sd

R 4d
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APPENDIX E

If deflections are measured along a section of

a beam in which the moment is constant or approximately so,

then the curvature could be determined. Using the notation

of Fig. E.1 I we can derive an expression for the
second derivative of the deflection at point 2 as follows.

_1= " -' d2d

1 dx dR i+/y 3/ 2 -' = 4- (E.1)
R dx (E d)

I dx I

(Second Slope) 2  SloPe 2 - 3 - SloPe 1'2 (E.2)

&x

where

Slope 1 -2 = Y2 Y

Slope2-3 = -~

Ax

(Second Slope) 2 = (1/R) 2

Y3 - Y2 . Y2 " Yl
= X x-

Ax

= Y3  
2Y2 

+ Yl

(AX)de (E.3)
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APPENDIX F

The singly redundant portal frame shown in

Fig. P.1 was tested beyond the elastic limit. In order

to know the bending moment at the center line, the

horizontal reaction must be measured during the entire

loading cycle.

-t---77

b

'IIp £ HD/

Fig. F.1 Singly Redundant Portal Frame

The bending moment at the centerline section

is given by:

M = _ Hh

88= p t Hh (F. 1)

Substituting the values of I = 11.2", h =5.6"
M = 4.2 P- 5.6H (F.2)

The values of H were taken from Fig. 4.1.21.
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